Yujin Wang
2023
SRCB at SemEval-2023 Task 1: Prompt Based and Cross-Modal Retrieval Enhanced Visual Word Sense Disambiguation
Xudong Zhang
|
Tiange Zhen
|
Jing Zhang
|
Yujin Wang
|
Song Liu
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
The Visual Word Sense Disambiguation (VWSD) shared task aims at selecting the image among candidates that best interprets the semantics of a target word with a short-length phrase for English, Italian, and Farsi. The limited phrase context, which only contains 2-3 words, challenges the model’s understanding ability, and the visual label requires image-text matching performance across different modalities. In this paper, we propose a prompt based and multimodal retrieval enhanced VWSD system, which uses the rich potential knowledge of large-scale pretrained models by prompting and additional text-image information from knowledge bases and open datasets. Under the English situation and given an input phrase, (1) the context retrieval module predicts the correct definition from sense inventory by matching phrase and context through a biencoder architecture. (2) The image retrieval module retrieves the relevant images from an image dataset.(3) The matching module decides that either text or image is used to pair with image labels by a rule-based strategy, then ranks the candidate images according to the similarity score. Our system ranks first in the English track and second in the average of all languages (English, Italian, and Farsi).
2022
SRCB at SemEval-2022 Task 5: Pretraining Based Image to Text Late Sequential Fusion System for Multimodal Misogynous Meme Identification
Jing Zhang
|
Yujin Wang
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)
Online misogyny meme detection is an image/text multimodal classification task, the complicated relation of image and text challenges the intelligent system’s modality fusion learning capability. In this paper, we investigate the single-stream UNITER and dual-stream CLIP multimodal pretrained models on their capability to handle strong and weakly correlated image/text pairs. The XGBoost classifier with image features extracted by the CLIP model has the highest performance and being robust on domain shift. Based on this, we propose the PBR system, an ensemble system of Pretraining models, Boosting method and Rule-based adjustment, text information is fused into the system using our late sequential fusion scheme. Our system ranks 1st place on both sub-task A and sub-task B of the SemEval-2022 Task 5 Multimedia Automatic Misogyny Identification, with 0.834/0.731 macro F1 scores for sub-task A/B correspondingly.