Yusong Wang


2024

pdf bib
LAMBDA: Large Language Model-Based Data Augmentation for Multi-Modal Machine Translation
Yusong Wang | Dongyuan Li | Jialun Shen | Yicheng Xu | Mingkun Xu | Kotaro Funakoshi | Manabu Okumura
Findings of the Association for Computational Linguistics: EMNLP 2024

Multi-modal machine translation (MMT) can reduce ambiguity and semantic distortion compared with traditional machine translation (MT) by utilizing auxiliary information such as images. However, current MMT methods face two primary challenges. The first is their underperformance compared to MT methods based on pre-trained models. The second is the inadequate exploitation and integration of the image modality within the model, primarily due to a lack of triplet training data. A mainstream approach is to introduce large amounts of parallel and monolingual data to train the text model and the visual model separately. However, incorporating extensive external data can result in data imbalance, which may introduce biases during training. Additionally, the collection and cleaning of such large datasets is labor-intensive. To overcome these challenges, we introduce a novel, low-cost, large language model-based data augmentation method called LAMBDA, which can enrich the original samples and expand the dataset without requiring external images and text. We propose a fine-grained image captioning module with a noise filter to hierarchically and accurately extract unexploited information from images. Additionally, we design two specific prompts to guide the GPT-3.5 model in generating enriched texts and the corresponding translations. The enriched samples contain diverse text and strong connections between text and images, leading to significant improvements for MMT baselines, with the highest being an increase of up to 3.83 BLEU score and 3.61 METEOR score.

2023

pdf bib
Joyful: Joint Modality Fusion and Graph Contrastive Learning for Multimoda Emotion Recognition
Dongyuan Li | Yusong Wang | Kotaro Funakoshi | Manabu Okumura
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Multimodal emotion recognition aims to recognize emotions for each utterance from multiple modalities, which has received increasing attention for its application in human-machine interaction. Current graph-based methods fail to simultaneously depict global contextual features and local diverse uni-modal features in a dialogue. Furthermore, with the number of graph layers increasing, they easily fall into over-smoothing. In this paper, we propose a method for joint modality fusion and graph contrastive learning for multimodal emotion recognition (Joyful), where multimodality fusion, contrastive learning, and emotion recognition are jointly optimized. Specifically, we first design a new multimodal fusion mechanism that can provide deep interaction and fusion between the global contextual and uni-modal specific features. Then, we introduce a graph contrastive learning framework with inter- and intra-view contrastive losses to learn more distinguishable representations for samples with different sentiments. Extensive experiments on three benchmark datasets indicate that Joyful achieved state-of-the-art (SOTA) performance compared with all baselines. Code is released on Github (https://anonymous.4open.science/r/MERC-7F88).