Yusuke Hirota
2024
Resampled Datasets Are Not Enough: Mitigating Societal Bias Beyond Single Attributes
Yusuke Hirota
|
Jerone Andrews
|
Dora Zhao
|
Orestis Papakyriakopoulos
|
Apostolos Modas
|
Yuta Nakashima
|
Alice Xiang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
We tackle societal bias in image-text datasets by removing spurious correlations between protected groups and image attributes. Traditional methods only target labeled attributes, ignoring biases from unlabeled ones. Using text-guided inpainting models, our approach ensures protected group independence from all attributes and mitigates inpainting biases through data filtering. Evaluations on multi-label image classification and image captioning tasks show our method effectively reduces bias without compromising performance across various models. Specifically, we achieve an average societal bias reduction of 46.1% in leakage-based bias metrics for multi-label classification and 74.8% for image captioning.
From Descriptive Richness to Bias: Unveiling the Dark Side of Generative Image Caption Enrichment
Yusuke Hirota
|
Ryo Hachiuma
|
Chao-Han Huck Yang
|
Yuta Nakashima
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) have enhanced the capacity of vision-language models to caption visual text. This generative approach to image caption enrichment further makes textual captions more descriptive, improving alignment with the visual context. However, while many studies focus on the benefits of generative caption enrichment (GCE), are there any negative side effects? We compare standard-format captions and recent GCE processes from the perspectives of gender bias and hallucination, showing that enriched captions suffer from increased gender bias and hallucination. Furthermore, models trained on these enriched captions amplify gender bias by an average of 30.9% and increase hallucination by 59.5%. This study serves as a caution against the trend of making captions more descriptive.
Search
Co-authors
- Yuta Nakashima 2
- Jerone Andrews 1
- Dora Zhao 1
- Orestis Papakyriakopoulos 1
- Apostolos Modas 1
- show all...