Zhe Sun


2022

pdf bib
A GlobalPointer based Robust Approach for Information Extraction from Dialog Transcripts
Yanbo J. Wang | Sheng Chen | Hengxing Cai | Wei Wei | Kuo Yan | Zhe Sun | Hui Qin | Yuming Li | Xiaochen Cai
Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)

With the widespread popularisation of intelligent technology, task-based dialogue systems (TOD) are increasingly being applied to a wide variety of practical scenarios. As the key tasks in dialogue systems, named entity recognition and slot filling play a crucial role in the completeness and accuracy of information extraction. This paper is an evaluation paper for Sere-TOD 2022 Workshop challenge (Track 1 Information extraction from dialog transcripts). We proposed a multi-model fusion approach based on GlobalPointer, combined with some optimisation tricks, finally achieved an entity F1 of 60.73, an entity-slot-value triple F1 of 56, and an average F1 of 58.37, and got the highest score in SereTOD 2022 Workshop challenge

2018

pdf bib
JTAV: Jointly Learning Social Media Content Representation by Fusing Textual, Acoustic, and Visual Features
Hongru Liang | Haozheng Wang | Jun Wang | Shaodi You | Zhe Sun | Jin-Mao Wei | Zhenglu Yang
Proceedings of the 27th International Conference on Computational Linguistics

Learning social media content is the basis of many real-world applications, including information retrieval and recommendation systems, among others. In contrast with previous works that focus mainly on single modal or bi-modal learning, we propose to learn social media content by fusing jointly textual, acoustic, and visual information (JTAV). Effective strategies are proposed to extract fine-grained features of each modality, that is, attBiGRU and DCRNN. We also introduce cross-modal fusion and attentive pooling techniques to integrate multi-modal information comprehensively. Extensive experimental evaluation conducted on real-world datasets demonstrate our proposed model outperforms the state-of-the-art approaches by a large margin.