Zhejian Lai
2023
Improved Pseudo Data for Machine Translation Quality Estimation with Constrained Beam Search
Xiang Geng
|
Yu Zhang
|
Zhejian Lai
|
Shuaijie She
|
Wei Zou
|
Shimin Tao
|
Hao Yang
|
Jiajun Chen
|
Shujian Huang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Machine translation (MT) quality estimation (QE) is a crucial task to estimate the quality of MT outputs when reference translations are unavailable. Many studies focus on generating pseudo data using large parallel corpus and achieve remarkable success in the supervised setting. However, pseudo data solutions are less satisfying in unsupervised scenarios because the pseudo labels are inaccurate or the pseudo translations differ from the real ones. To address these problems, we propose to generate pseudo data using the MT model with constrained beam search (CBSQE). CBSQE preserves the reference parts with high MT probabilities as correct translations, while the rest parts as the wrong ones for MT generation. Therefore, CBSQE can reduce the false negative labels caused by synonyms. Overall, beam search will prefer a more real hypothesis with a higher MT generation likelihood. Extensive experiments demonstrate that CBSQE outperforms strong baselines in both supervised and unsupervised settings. Analyses further show the superiority of CBSQE. The code is available at https://github.com/NJUNLP/njuqe.
Unify Word-level and Span-level Tasks: NJUNLP’s Participation for the WMT2023 Quality Estimation Shared Task
Xiang Geng
|
Zhejian Lai
|
Yu Zhang
|
Shimin Tao
|
Hao Yang
|
Jiajun Chen
|
Shujian Huang
Proceedings of the Eighth Conference on Machine Translation
We introduce the submissions of the NJUNLP team to the WMT 2023 Quality Estimation (QE) shared task. Our team submitted predictions for the English-German language pair on all two sub-tasks: (i) sentence- and word-level quality prediction; and (ii) fine-grained error span detection. This year, we further explore pseudo data methods for QE based on NJUQE framework (https://github.com/NJUNLP/njuqe). We generate pseudo MQM data using parallel data from the WMT translation task. We pre-train the XLMR large model on pseudo QE data, then fine-tune it on real QE data. At both stages, we jointly learn sentence-level scores and word-level tags. Empirically, we conduct experiments to find the key hyper-parameters that improve the performance. Technically, we propose a simple method that covert the word-level outputs to fine-grained error span results. Overall, our models achieved the best results in English-German for both word-level and fine-grained error span detection sub-tasks by a considerable margin.
Search
Fix data
Co-authors
- Jiajun Chen 2
- Xiang Geng 2
- Shujian Huang (书剑 黄) 2
- Shimin Tao 2
- Hao Yang (杨浩) 2
- show all...