Zhigang Yuan


2020

pdf bib
Named Entity Recognition in Multi-level Contexts
Yubo Chen | Chuhan Wu | Tao Qi | Zhigang Yuan | Yongfeng Huang
Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing

Named entity recognition is a critical task in the natural language processing field. Most existing methods for this task can only exploit contextual information within a sentence. However, their performance on recognizing entities in limited or ambiguous sentence-level contexts is usually unsatisfactory. Fortunately, other sentences in the same document can provide supplementary document-level contexts to help recognize these entities. In addition, words themselves contain word-level contextual information since they usually have different preferences of entity type and relative position from named entities. In this paper, we propose a unified framework to incorporate multi-level contexts for named entity recognition. We use TagLM as our basic model to capture sentence-level contexts. To incorporate document-level contexts, we propose to capture interactions between sentences via a multi-head self attention network. To mine word-level contexts, we propose an auxiliary task to predict the type of each word to capture its type preference. We jointly train our model in entity recognition and the auxiliary classification task via multi-task learning. The experimental results on several benchmark datasets validate the effectiveness of our method.

2018

pdf bib
THU_NGN at SemEval-2018 Task 3: Tweet Irony Detection with Densely connected LSTM and Multi-task Learning
Chuhan Wu | Fangzhao Wu | Sixing Wu | Junxin Liu | Zhigang Yuan | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Detecting irony is an important task to mine fine-grained information from social web messages. Therefore, the Semeval-2018 task 3 is aimed to detect the ironic tweets (subtask A) and their ironic types (subtask B). In order to address this task, we propose a system based on a densely connected LSTM network with multi-task learning strategy. In our dense LSTM model, each layer will take all outputs from previous layers as input. The last LSTM layer will output the hidden representations of texts, and they will be used in three classification task. In addition, we incorporate several types of features to improve the model performance. Our model achieved an F-score of 70.54 (ranked 2/43) in the subtask A and 49.47 (ranked 3/29) in the subtask B. The experimental results validate the effectiveness of our system.

pdf bib
THU_NGN at SemEval-2018 Task 1: Fine-grained Tweet Sentiment Intensity Analysis with Attention CNN-LSTM
Chuhan Wu | Fangzhao Wu | Junxin Liu | Zhigang Yuan | Sixing Wu | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Traditional sentiment analysis approaches mainly focus on classifying the sentiment polarities or emotion categories of texts. However, they can’t exploit the sentiment intensity information. Therefore, the SemEval-2018 Task 1 is aimed to automatically determine the intensity of emotions or sentiment of tweets to mine fine-grained sentiment information. In order to address this task, we propose a system based on an attention CNN-LSTM model. In our model, LSTM is used to extract the long-term contextual information from texts. We apply attention techniques to selecting this information. A CNN layer with different size of kernels is used to extract local features. The dense layers take the pooled CNN feature maps and predict the intensity scores. Our system reaches average Pearson correlation score of 0.722 (ranked 12/48) in emotion intensity regression task, and 0.810 in valence regression task (ranked 15/38). It indicates that our system can be further extended.

pdf bib
THU_NGN at SemEval-2018 Task 2: Residual CNN-LSTM Network with Attention for English Emoji Prediction
Chuhan Wu | Fangzhao Wu | Sixing Wu | Zhigang Yuan | Junxin Liu | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Emojis are widely used by social media and social network users when posting their messages. It is important to study the relationships between messages and emojis. Thus, in SemEval-2018 Task 2 an interesting and challenging task is proposed, i.e., predicting which emojis are evoked by text-based tweets. We propose a residual CNN-LSTM with attention (RCLA) model for this task. Our model combines CNN and LSTM layers to capture both local and long-range contextual information for tweet representation. In addition, attention mechanism is used to select important components. Besides, residual connection is applied to CNN layers to facilitate the training of neural networks. We also incorporated additional features such as POS tags and sentiment features extracted from lexicons. Our model achieved 30.25% macro-averaged F-score in the first subtask (i.e., emoji prediction in English), ranking 7th out of 48 participants.

pdf bib
THU_NGN at SemEval-2018 Task 10: Capturing Discriminative Attributes with MLP-CNN model
Chuhan Wu | Fangzhao Wu | Sixing Wu | Zhigang Yuan | Yongfeng Huang
Proceedings of the 12th International Workshop on Semantic Evaluation

Existing semantic models are capable of identifying the semantic similarity of words. However, it’s hard for these models to discriminate between a word and another similar word. Thus, the aim of SemEval-2018 Task 10 is to predict whether a word is a discriminative attribute between two concepts. In this task, we apply a multilayer perceptron (MLP)-convolutional neural network (CNN) model to identify whether an attribute is discriminative. The CNNs are used to extract low-level features from the inputs. The MLP takes both the flatten CNN maps and inputs to predict the labels. The evaluation F-score of our system on the test set is 0.629 (ranked 15th), which indicates that our system still needs to be improved. However, the behaviours of our system in our experiments provide useful information, which can help to improve the collective understanding of this novel task.

pdf bib
Neural Metaphor Detecting with CNN-LSTM Model
Chuhan Wu | Fangzhao Wu | Yubo Chen | Sixing Wu | Zhigang Yuan | Yongfeng Huang
Proceedings of the Workshop on Figurative Language Processing

Metaphors are figurative languages widely used in daily life and literatures. It’s an important task to detect the metaphors evoked by texts. Thus, the metaphor shared task is aimed to extract metaphors from plain texts at word level. We propose to use a CNN-LSTM model for this task. Our model combines CNN and LSTM layers to utilize both local and long-range contextual information for identifying metaphorical information. In addition, we compare the performance of the softmax classifier and conditional random field (CRF) for sequential labeling in this task. We also incorporated some additional features such as part of speech (POS) tags and word cluster to improve the performance of model. Our best model achieved 65.06% F-score in the all POS testing subtask and 67.15% in the verbs testing subtask.

2017

pdf bib
THU_NGN at IJCNLP-2017 Task 2: Dimensional Sentiment Analysis for Chinese Phrases with Deep LSTM
Chuhan Wu | Fangzhao Wu | Yongfeng Huang | Sixing Wu | Zhigang Yuan
Proceedings of the IJCNLP 2017, Shared Tasks

Predicting valence-arousal ratings for words and phrases is very useful for constructing affective resources for dimensional sentiment analysis. Since the existing valence-arousal resources of Chinese are mainly in word-level and there is a lack of phrase-level ones, the Dimensional Sentiment Analysis for Chinese Phrases (DSAP) task aims to predict the valence-arousal ratings for Chinese affective words and phrases automatically. In this task, we propose an approach using a densely connected LSTM network and word features to identify dimensional sentiment on valence and arousal for words and phrases jointly. We use word embedding as major feature and choose part of speech (POS) and word clusters as additional features to train the dense LSTM network. The evaluation results of our submissions (1st and 2nd in average performance) validate the effectiveness of our system to predict valence and arousal dimensions for Chinese words and phrases.