Zhivko Angelov
2019
Risk Factors Extraction from Clinical Texts based on Linked Open Data
Svetla Boytcheva
|
Galia Angelova
|
Zhivko Angelov
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2019)
This paper presents experiments in risk factors analysis based on clinical texts enhanced with Linked Open Data (LOD). The idea is to determine whether a patient has risk factors for a specific disease analyzing only his/her outpatient records. A semantic graph of “meta-knowledge” about a disease of interest is constructed, with integrated multilingual terms (labels) of symptoms, risk factors etc. coming from Wikidata, PubMed, Wikipedia and MESH, and linked to clinical records of individual patients via ICD–10 codes. Then a predictive model is trained to foretell whether patients are at risk to develop the disease of interest. The testing was done using outpatient records from a nation-wide repository available for the period 2011-2016. The results show improvement of the overall performance of all tested algorithms (kNN, Naive Bayes, Tree, Logistic regression, ANN), when the clinical texts are enriched with LOD resources.
2017
Identification of Risk Factors in Clinical Texts through Association Rules
Svetla Boytcheva
|
Ivelina Nikolova
|
Galia Angelova
|
Zhivko Angelov
Proceedings of the Biomedical NLP Workshop associated with RANLP 2017
We describe a method which extracts Association Rules from texts in order to recognise verbalisations of risk factors. Usually some basic vocabulary about risk factors is known but medical conditions are expressed in clinical narratives with much higher variety. We propose an approach for data-driven learning of specialised medical vocabulary which, once collected, enables early alerting of potentially affected patients. The method is illustrated by experimens with clinical records of patients with Chronic Obstructive Pulmonary Disease (COPD) and comorbidity of CORD, Diabetes Melitus and Schizophrenia. Our input data come from the Bulgarian Diabetic Register, which is built using a pseudonymised collection of outpatient records for about 500,000 diabetic patients. The generated Association Rules for CORD are analysed in the context of demographic, gender, and age information. Valuable anounts of meaningful words, signalling risk factors, are discovered with high precision and confidence.
Search