Zhuxin Wang


2023

pdf bib
Measuring Fine-Grained Semantic Equivalence with Abstract Meaning Representation
Shira Wein | Zhuxin Wang | Nathan Schneider
Proceedings of the 15th International Conference on Computational Semantics

Identifying semantically equivalent sentences is important for many NLP tasks. Current approaches to semantic equivalence take a loose, sentence-level approach to “equivalence,” despite evidence that fine-grained differences and implicit content have an effect on human understanding and system performance. In this work, we introduce a novel, more sensitive method of characterizing cross-lingual semantic equivalence that leverages Abstract Meaning Representation graph structures. We find that parsing sentences into AMRs and comparing the AMR graphs enables finer-grained equivalence measurement than comparing the sentences themselves. We demonstrate that when using gold or even automatically parsed AMR annotations, our solution is finer-grained than existing corpus filtering methods and more accurate at predicting strictly equivalent sentences than existing semantic similarity metrics.

2021

pdf bib
Subcategorizing Adverbials in Universal Conceptual Cognitive Annotation
Zhuxin Wang | Jakob Prange | Nathan Schneider
Proceedings of the Joint 15th Linguistic Annotation Workshop (LAW) and 3rd Designing Meaning Representations (DMR) Workshop

Universal Conceptual Cognitive Annotation (UCCA) is a semantic annotation scheme that organizes texts into coarse predicate-argument structure, offering broad coverage of semantic phenomena. At the same time, there is still need for a finer-grained treatment of many of the categories. The Adverbial category is of special interest, as it covers a wide range of fundamentally different meanings such as negation, causation, aspect, and event quantification. In this paper we introduce a refinement annotation scheme for UCCA’s Adverbial category, showing that UCCA Adverbials can indeed be subcategorized into at least 7 semantic types, and doing so can help clarify and disambiguate the otherwise coarse-grained labels. We provide a preliminary set of annotation guidelines, as well as pilot annotation experiments with high inter-annotator agreement, confirming the validity of the scheme.