Zili Zhou


2023

pdf bib
Transformers and the Representation of Biomedical Background Knowledge
Oskar Wysocki | Zili Zhou | Paul O’Regan | Deborah Ferreira | Magdalena Wysocka | Dónal Landers | André Freitas
Computational Linguistics, Volume 49, Issue 1 - March 2023

Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the biomedical domain based on publicly available biomedical corpora. As such, they have the potential to encode large-scale biological knowledge. We investigate the encoding and representation of biological knowledge in these models, and its potential utility to support inference in cancer precision medicine—namely, the interpretation of the clinical significance of genomic alterations. We compare the performance of different transformer baselines; we use probing to determine the consistency of encodings for distinct entities; and we use clustering methods to compare and contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We show that these models do indeed encode biological knowledge, although some of this is lost in fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases and imbalances in the dataset.

2022

pdf bib
SSEGCN: Syntactic and Semantic Enhanced Graph Convolutional Network for Aspect-based Sentiment Analysis
Zheng Zhang | Zili Zhou | Yanna Wang
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Aspect-based Sentiment Analysis (ABSA) aims to predict the sentiment polarity towards a particular aspect in a sentence. Recently, graph neural networks based on dependency tree convey rich structural information which is proven to be utility for ABSA. However, how to effectively harness the semantic and syntactic structure information from the dependency tree remains a challenging research question. In this paper, we propose a novel Syntactic and Semantic Enhanced Graph Convolutional Network (SSEGCN) model for ABSA task. Specifically, we propose an aspect-aware attention mechanism combined with self-attention to obtain attention score matrices of a sentence, which can not only learn the aspect-related semantic correlations, but also learn the global semantics of the sentence. In order to obtain comprehensive syntactic structure information, we construct syntactic mask matrices of the sentence according to the different syntactic distances between words. Furthermore, to combine syntactic structure and semantic information, we equip the attention score matrices by syntactic mask matrices. Finally, we enhance the node representations with graph convolutional network over attention score matrices for ABSA. Experimental results on benchmark datasets illustrate that our proposed model outperforms state-of-the-art methods.

pdf bib
PhysNLU: A Language Resource for Evaluating Natural Language Understanding and Explanation Coherence in Physics
Jordan Meadows | Zili Zhou | André Freitas
Proceedings of the Thirteenth Language Resources and Evaluation Conference

In order for language models to aid physics research, they must first encode representations of mathematical and natural language discourse which lead to coherent explanations, with correct ordering and relevance of statements. We present a collection of datasets developed to evaluate the performance of language models in this regard, which measure capabilities with respect to sentence ordering, position, section prediction, and discourse coherence. Analysis of the data reveals the classes of arguments and sub-disciplines which are most common in physics discourse, as well as the sentence-level frequency of equations and expressions. We present baselines that demonstrate how contemporary language models are challenged by coherence related tasks in physics, even when trained on mathematical natural language objectives.

2021

pdf bib
Encoding Explanatory Knowledge for Zero-shot Science Question Answering
Zili Zhou | Marco Valentino | Donal Landers | André Freitas
Proceedings of the 14th International Conference on Computational Semantics (IWCS)

This paper describes N-XKT (Neural encoding based on eXplanatory Knowledge Transfer), a novel method for the automatic transfer of explanatory knowledge through neural encoding mechanisms. We demonstrate that N-XKT is able to improve accuracy and generalization on science Question Answering (QA). Specifically, by leveraging facts from background explanatory knowledge corpora, the N-XKT model shows a clear improvement on zero-shot QA. Furthermore, we show that N-XKT can be fine-tuned on a target QA dataset, enabling faster convergence and more accurate results. A systematic analysis is conducted to quantitatively analyze the performance of the N-XKT model and the impact of different categories of knowledge on the zero-shot generalization task.