Ziyu Zhuang
2022
SelF-Eval: Self-supervised Fine-grained Dialogue Evaluation
Longxuan Ma
|
Ziyu Zhuang
|
Weinan Zhang
|
Mingda Li
|
Ting Liu
Proceedings of the 29th International Conference on Computational Linguistics
This paper introduces a novel Self-supervised Fine-grained Dialogue Evaluation framework (SelF-Eval). The core idea is to model the correlation between turn quality and the entire dialogue quality. We first propose a novel automatic data construction method that can automatically assign fine-grained scores for arbitrarily dialogue data. Then we train SelF-Eval with a multi-level contrastive learning schema which helps to distinguish different score levels. Experimental results on multiple benchmarks show that SelF-Eval is highly consistent with human evaluations and better than the state-of-the-art models. We give a detailed analysis of the experiments in this paper. Our code is available on GitHub.