International Workshop on
Using Linguistic Information
for Hybrid Machine Translation
LIHMT
Shared Task on
Applying Machine Learning
Techniques to Optimise the
Division of Labour in Hybrid
Machine Translation
November 2011
LIHMT 2011
International Workshop on
Using Linguistic Information
for Hybrid Machine Translation
18th November 2011
Universitat Politècnica de Catalunya
Contents
Introductions, programme, and About the OpenMT-2 project
Rich morphology and what can we expect from hybrid approaches to MT [abstract].
Ondřej Bojar
Statistical MT with syntax and morphology: challenges and some solutions [abstract]
Alon Lavie
Linguistic indicators for quality estimation of machine translation [abstract]
Lucia Specia
Improved statistical machine translation using multiword expressions.
Dhouha Bouamor, Nasredine Semmar, and Pierre Zweigenbaum
VERTa: exploring a multidimensional linguistically-motivated metric.
Elisabet
Comelles,
Using Apertium linguistic data for tokenization to improve Moses SMT performance.
Jakob Elming and Martin Haulrich
Comparing corpus-based MT approaches using restricted resources.
Monica Gavrila and Natalia Elita
Deep evaluation of hybrid architectures: simple metrics correlated with human judgments
Gorka Labaka, Arantza Díaz de Ilarraza, Cristina España-Bonet, Lluís Màrquez and Kepa Sarsola
Chi-kiu Lo and Dekai Wu
Word translation disambiguation without parallel texts.
Erwin Marsi, André Lynum, Lars Bungum, and Björn Gambäck
Nasredine Semmar and Dhouha Bouamor
ML4HMT
Shared Task on
Applying Machine Learning
Techniques to Optimise the
Division of Labour in Hybrid
Machine Translation
19th November
Contents
Introduction, programme and about META-NET
Machine translation system combination with MANY for ML4HMT
LoïcBarrault & Patrik Lambert
DCU confusion network-based system combination for ML4HMT
Tsuyoshi Okita and Josef van Genabith
DFKI system combination with sentence ranking at ML4HMT-2011.
Eleftherios Avramidis
DFKI system combination using syntactic information at ML4HMT-2011
Christian Federmann, Sabine Hunsicker, Yu Chen, and Rui Wang
Christian Federmann