@inproceedings{sokolov-etal-2012-non,
title = "Non-linear n-best List Reranking with Few Features",
author = "Sokolov, Artem and
Wisniewski, Guillaume and
Yvon, Fran{\c{c}}ois",
booktitle = "Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Research Papers",
month = oct # " 28-" # nov # " 1",
year = "2012",
address = "San Diego, California, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2012.amta-papers.17",
abstract = "In Machine Translation, it is customary to compute the model score of a predicted hypothesis as a linear combination of multiple features, where each feature assesses a particular facet of the hypothesis. The choice of a linear combination is usually justified by the possibility of efficient inference (decoding); yet, the appropriateness of this simple combination scheme to the task at hand is rarely questioned. In this paper, we propose an approach that replaces the linear scoring function with a non-linear scoring function. To investigate the applicability of this approach, we rescore n-best lists generated with a conventional machine translation engine (using a linear scoring function for generating its hypotheses) with a non-linear scoring function learned using the learning-to-rank framework. Moderate, though consistent, gains in BLEU are demonstrated on the WMT{'}10, WMT{'}11 and WMT{'}12 test sets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sokolov-etal-2012-non">
<titleInfo>
<title>Non-linear n-best List Reranking with Few Features</title>
</titleInfo>
<name type="personal">
<namePart type="given">Artem</namePart>
<namePart type="family">Sokolov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guillaume</namePart>
<namePart type="family">Wisniewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2012-oct 28-nov 1</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Research Papers</title>
</titleInfo>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">San Diego, California, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In Machine Translation, it is customary to compute the model score of a predicted hypothesis as a linear combination of multiple features, where each feature assesses a particular facet of the hypothesis. The choice of a linear combination is usually justified by the possibility of efficient inference (decoding); yet, the appropriateness of this simple combination scheme to the task at hand is rarely questioned. In this paper, we propose an approach that replaces the linear scoring function with a non-linear scoring function. To investigate the applicability of this approach, we rescore n-best lists generated with a conventional machine translation engine (using a linear scoring function for generating its hypotheses) with a non-linear scoring function learned using the learning-to-rank framework. Moderate, though consistent, gains in BLEU are demonstrated on the WMT’10, WMT’11 and WMT’12 test sets.</abstract>
<identifier type="citekey">sokolov-etal-2012-non</identifier>
<location>
<url>https://aclanthology.org/2012.amta-papers.17</url>
</location>
<part>
<date>2012-oct 28-nov 1</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Non-linear n-best List Reranking with Few Features
%A Sokolov, Artem
%A Wisniewski, Guillaume
%A Yvon, François
%S Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Research Papers
%D 2012
%8 oct 28 nov 1
%I Association for Machine Translation in the Americas
%C San Diego, California, USA
%F sokolov-etal-2012-non
%X In Machine Translation, it is customary to compute the model score of a predicted hypothesis as a linear combination of multiple features, where each feature assesses a particular facet of the hypothesis. The choice of a linear combination is usually justified by the possibility of efficient inference (decoding); yet, the appropriateness of this simple combination scheme to the task at hand is rarely questioned. In this paper, we propose an approach that replaces the linear scoring function with a non-linear scoring function. To investigate the applicability of this approach, we rescore n-best lists generated with a conventional machine translation engine (using a linear scoring function for generating its hypotheses) with a non-linear scoring function learned using the learning-to-rank framework. Moderate, though consistent, gains in BLEU are demonstrated on the WMT’10, WMT’11 and WMT’12 test sets.
%U https://aclanthology.org/2012.amta-papers.17
Markdown (Informal)
[Non-linear n-best List Reranking with Few Features](https://aclanthology.org/2012.amta-papers.17) (Sokolov et al., AMTA 2012)
ACL
- Artem Sokolov, Guillaume Wisniewski, and François Yvon. 2012. Non-linear n-best List Reranking with Few Features. In Proceedings of the 10th Conference of the Association for Machine Translation in the Americas: Research Papers, San Diego, California, USA. Association for Machine Translation in the Americas.