@inproceedings{flanagan-2014-bilingual,
title = "Bilingual phrase-to-phrase alignment for arbitrarily-small datasets",
author = "Flanagan, Kevin",
editor = "Al-Onaizan, Yaser and
Simard, Michel",
booktitle = "Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track",
month = oct # " 22-26",
year = "2014",
address = "Vancouver, Canada",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2014.amta-researchers.7",
pages = "83--95",
abstract = "This paper presents a novel system for sub-sentential alignment of bilingual sentence pairs, however few, using readily-available machine-readable bilingual dictionaries. Performance is evaluated against an existing gold-standard parallel corpus where word alignments are annotated, showing results that are a considerable improvement on a comparable system and on GIZA++ performance for the same corpus. Since naïve application of the system for N languages would require N(N - 1) dictionaries, it is also evaluated using a pivot language, where only 2(N - 1) dictionaries would be required, with surprisingly similar performance. The system is proposed as an alternative to statistical methods, for use with very small corpora or for {`}on-the-fly{'} alignment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="flanagan-2014-bilingual">
<titleInfo>
<title>Bilingual phrase-to-phrase alignment for arbitrarily-small datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Flanagan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2014-oct 22-26</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michel</namePart>
<namePart type="family">Simard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Vancouver, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a novel system for sub-sentential alignment of bilingual sentence pairs, however few, using readily-available machine-readable bilingual dictionaries. Performance is evaluated against an existing gold-standard parallel corpus where word alignments are annotated, showing results that are a considerable improvement on a comparable system and on GIZA++ performance for the same corpus. Since naïve application of the system for N languages would require N(N - 1) dictionaries, it is also evaluated using a pivot language, where only 2(N - 1) dictionaries would be required, with surprisingly similar performance. The system is proposed as an alternative to statistical methods, for use with very small corpora or for ‘on-the-fly’ alignment.</abstract>
<identifier type="citekey">flanagan-2014-bilingual</identifier>
<location>
<url>https://aclanthology.org/2014.amta-researchers.7</url>
</location>
<part>
<date>2014-oct 22-26</date>
<extent unit="page">
<start>83</start>
<end>95</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bilingual phrase-to-phrase alignment for arbitrarily-small datasets
%A Flanagan, Kevin
%Y Al-Onaizan, Yaser
%Y Simard, Michel
%S Proceedings of the 11th Conference of the Association for Machine Translation in the Americas: MT Researchers Track
%D 2014
%8 oct 22 26
%I Association for Machine Translation in the Americas
%C Vancouver, Canada
%F flanagan-2014-bilingual
%X This paper presents a novel system for sub-sentential alignment of bilingual sentence pairs, however few, using readily-available machine-readable bilingual dictionaries. Performance is evaluated against an existing gold-standard parallel corpus where word alignments are annotated, showing results that are a considerable improvement on a comparable system and on GIZA++ performance for the same corpus. Since naïve application of the system for N languages would require N(N - 1) dictionaries, it is also evaluated using a pivot language, where only 2(N - 1) dictionaries would be required, with surprisingly similar performance. The system is proposed as an alternative to statistical methods, for use with very small corpora or for ‘on-the-fly’ alignment.
%U https://aclanthology.org/2014.amta-researchers.7
%P 83-95
Markdown (Informal)
[Bilingual phrase-to-phrase alignment for arbitrarily-small datasets](https://aclanthology.org/2014.amta-researchers.7) (Flanagan, AMTA 2014)
ACL