@inproceedings{guz-etal-2020-unleashing,
title = "Unleashing the Power of Neural Discourse Parsers - A Context and Structure Aware Approach Using Large Scale Pretraining",
author = "Guz, Grigorii and
Huber, Patrick and
Carenini, Giuseppe",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.337",
doi = "10.18653/v1/2020.coling-main.337",
pages = "3794--3805",
abstract = "RST-based discourse parsing is an important NLP task with numerous downstream applications, such as summarization, machine translation and opinion mining. In this paper, we demonstrate a simple, yet highly accurate discourse parser, incorporating recent contextual language models. Our parser establishes the new state-of-the-art (SOTA) performance for predicting structure and nuclearity on two key RST datasets, RST-DT and Instr-DT. We further demonstrate that pretraining our parser on the recently available large-scale {``}silver-standard{''} discourse treebank MEGA-DT provides even larger performance benefits, suggesting a novel and promising research direction in the field of discourse analysis.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guz-etal-2020-unleashing">
<titleInfo>
<title>Unleashing the Power of Neural Discourse Parsers - A Context and Structure Aware Approach Using Large Scale Pretraining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Grigorii</namePart>
<namePart type="family">Guz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patrick</namePart>
<namePart type="family">Huber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Carenini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>RST-based discourse parsing is an important NLP task with numerous downstream applications, such as summarization, machine translation and opinion mining. In this paper, we demonstrate a simple, yet highly accurate discourse parser, incorporating recent contextual language models. Our parser establishes the new state-of-the-art (SOTA) performance for predicting structure and nuclearity on two key RST datasets, RST-DT and Instr-DT. We further demonstrate that pretraining our parser on the recently available large-scale “silver-standard” discourse treebank MEGA-DT provides even larger performance benefits, suggesting a novel and promising research direction in the field of discourse analysis.</abstract>
<identifier type="citekey">guz-etal-2020-unleashing</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.337</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.337</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3794</start>
<end>3805</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unleashing the Power of Neural Discourse Parsers - A Context and Structure Aware Approach Using Large Scale Pretraining
%A Guz, Grigorii
%A Huber, Patrick
%A Carenini, Giuseppe
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F guz-etal-2020-unleashing
%X RST-based discourse parsing is an important NLP task with numerous downstream applications, such as summarization, machine translation and opinion mining. In this paper, we demonstrate a simple, yet highly accurate discourse parser, incorporating recent contextual language models. Our parser establishes the new state-of-the-art (SOTA) performance for predicting structure and nuclearity on two key RST datasets, RST-DT and Instr-DT. We further demonstrate that pretraining our parser on the recently available large-scale “silver-standard” discourse treebank MEGA-DT provides even larger performance benefits, suggesting a novel and promising research direction in the field of discourse analysis.
%R 10.18653/v1/2020.coling-main.337
%U https://aclanthology.org/2020.coling-main.337
%U https://doi.org/10.18653/v1/2020.coling-main.337
%P 3794-3805
Markdown (Informal)
[Unleashing the Power of Neural Discourse Parsers - A Context and Structure Aware Approach Using Large Scale Pretraining](https://aclanthology.org/2020.coling-main.337) (Guz et al., COLING 2020)
ACL