@inproceedings{dai-adel-2020-analysis,
title = "An Analysis of Simple Data Augmentation for Named Entity Recognition",
author = "Dai, Xiang and
Adel, Heike",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.343",
doi = "10.18653/v1/2020.coling-main.343",
pages = "3861--3867",
abstract = "Simple yet effective data augmentation techniques have been proposed for sentence-level and sentence-pair natural language processing tasks. Inspired by these efforts, we design and compare data augmentation for named entity recognition, which is usually modeled as a token-level sequence labeling problem. Through experiments on two data sets from the biomedical and materials science domains (i2b2-2010 and MaSciP), we show that simple augmentation can boost performance for both recurrent and transformer-based models, especially for small training sets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dai-adel-2020-analysis">
<titleInfo>
<title>An Analysis of Simple Data Augmentation for Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heike</namePart>
<namePart type="family">Adel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Simple yet effective data augmentation techniques have been proposed for sentence-level and sentence-pair natural language processing tasks. Inspired by these efforts, we design and compare data augmentation for named entity recognition, which is usually modeled as a token-level sequence labeling problem. Through experiments on two data sets from the biomedical and materials science domains (i2b2-2010 and MaSciP), we show that simple augmentation can boost performance for both recurrent and transformer-based models, especially for small training sets.</abstract>
<identifier type="citekey">dai-adel-2020-analysis</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.343</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.343</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3861</start>
<end>3867</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Analysis of Simple Data Augmentation for Named Entity Recognition
%A Dai, Xiang
%A Adel, Heike
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F dai-adel-2020-analysis
%X Simple yet effective data augmentation techniques have been proposed for sentence-level and sentence-pair natural language processing tasks. Inspired by these efforts, we design and compare data augmentation for named entity recognition, which is usually modeled as a token-level sequence labeling problem. Through experiments on two data sets from the biomedical and materials science domains (i2b2-2010 and MaSciP), we show that simple augmentation can boost performance for both recurrent and transformer-based models, especially for small training sets.
%R 10.18653/v1/2020.coling-main.343
%U https://aclanthology.org/2020.coling-main.343
%U https://doi.org/10.18653/v1/2020.coling-main.343
%P 3861-3867
Markdown (Informal)
[An Analysis of Simple Data Augmentation for Named Entity Recognition](https://aclanthology.org/2020.coling-main.343) (Dai & Adel, COLING 2020)
ACL