@inproceedings{ferritto-etal-2020-ares,
title = "{ARES}: A Reading Comprehension Ensembling Service",
author = "Ferritto, Anthony and
Pan, Lin and
Chakravarti, Rishav and
Roukos, Salim and
Florian, Radu and
Murdock, J. William and
Sil, Avi",
editor = "Liu, Qun and
Schlangen, David",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.emnlp-demos.5",
doi = "10.18653/v1/2020.emnlp-demos.5",
pages = "31--37",
abstract = "We introduce ARES (A Reading Comprehension Ensembling Service): a novel Machine Reading Comprehension (MRC) demonstration system which utilizes an ensemble of models to increase F1 by 2.3 points. While many of the top leaderboard submissions in popular MRC benchmarks such as the Stanford Question Answering Dataset (SQuAD) and Natural Questions (NQ) use model ensembles, the accompanying papers do not publish their ensembling strategies. In this work, we detail and evaluate various ensembling strategies using the NQ dataset. ARES leverages the CFO (Chakravarti et al., 2019) and ReactJS distributed frameworks to provide a scalable interactive Question Answering experience that capitalizes on the agreement (or lack thereof) between models to improve the answer visualization experience.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferritto-etal-2020-ares">
<titleInfo>
<title>ARES: A Reading Comprehension Ensembling Service</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anthony</namePart>
<namePart type="family">Ferritto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lin</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rishav</namePart>
<namePart type="family">Chakravarti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salim</namePart>
<namePart type="family">Roukos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="family">Florian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">J</namePart>
<namePart type="given">William</namePart>
<namePart type="family">Murdock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Sil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Schlangen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce ARES (A Reading Comprehension Ensembling Service): a novel Machine Reading Comprehension (MRC) demonstration system which utilizes an ensemble of models to increase F1 by 2.3 points. While many of the top leaderboard submissions in popular MRC benchmarks such as the Stanford Question Answering Dataset (SQuAD) and Natural Questions (NQ) use model ensembles, the accompanying papers do not publish their ensembling strategies. In this work, we detail and evaluate various ensembling strategies using the NQ dataset. ARES leverages the CFO (Chakravarti et al., 2019) and ReactJS distributed frameworks to provide a scalable interactive Question Answering experience that capitalizes on the agreement (or lack thereof) between models to improve the answer visualization experience.</abstract>
<identifier type="citekey">ferritto-etal-2020-ares</identifier>
<identifier type="doi">10.18653/v1/2020.emnlp-demos.5</identifier>
<location>
<url>https://aclanthology.org/2020.emnlp-demos.5</url>
</location>
<part>
<date>2020-10</date>
<extent unit="page">
<start>31</start>
<end>37</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ARES: A Reading Comprehension Ensembling Service
%A Ferritto, Anthony
%A Pan, Lin
%A Chakravarti, Rishav
%A Roukos, Salim
%A Florian, Radu
%A Murdock, J. William
%A Sil, Avi
%Y Liu, Qun
%Y Schlangen, David
%S Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
%D 2020
%8 October
%I Association for Computational Linguistics
%C Online
%F ferritto-etal-2020-ares
%X We introduce ARES (A Reading Comprehension Ensembling Service): a novel Machine Reading Comprehension (MRC) demonstration system which utilizes an ensemble of models to increase F1 by 2.3 points. While many of the top leaderboard submissions in popular MRC benchmarks such as the Stanford Question Answering Dataset (SQuAD) and Natural Questions (NQ) use model ensembles, the accompanying papers do not publish their ensembling strategies. In this work, we detail and evaluate various ensembling strategies using the NQ dataset. ARES leverages the CFO (Chakravarti et al., 2019) and ReactJS distributed frameworks to provide a scalable interactive Question Answering experience that capitalizes on the agreement (or lack thereof) between models to improve the answer visualization experience.
%R 10.18653/v1/2020.emnlp-demos.5
%U https://aclanthology.org/2020.emnlp-demos.5
%U https://doi.org/10.18653/v1/2020.emnlp-demos.5
%P 31-37
Markdown (Informal)
[ARES: A Reading Comprehension Ensembling Service](https://aclanthology.org/2020.emnlp-demos.5) (Ferritto et al., EMNLP 2020)
ACL
- Anthony Ferritto, Lin Pan, Rishav Chakravarti, Salim Roukos, Radu Florian, J. William Murdock, and Avi Sil. 2020. ARES: A Reading Comprehension Ensembling Service. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 31–37, Online. Association for Computational Linguistics.