@inproceedings{gregory-etal-2020-transformer,
title = "A Transformer Approach to Contextual Sarcasm Detection in {T}witter",
author = "Gregory, Hunter and
Li, Steven and
Mohammadi, Pouya and
Tarn, Natalie and
Draelos, Rachel and
Rudin, Cynthia",
editor = "Klebanov, Beata Beigman and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee and
Feldman, Anna and
Ghosh, Debanjan",
booktitle = "Proceedings of the Second Workshop on Figurative Language Processing",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.figlang-1.37",
doi = "10.18653/v1/2020.figlang-1.37",
pages = "270--275",
abstract = "Understanding tone in Twitter posts will be increasingly important as more and more communication moves online. One of the most difficult, yet important tones to detect is sarcasm. In the past, LSTM and transformer architecture models have been used to tackle this problem. We attempt to expand upon this research, implementing LSTM, GRU, and transformer models, and exploring new methods to classify sarcasm in Twitter posts. Among these, the most successful were transformer models, most notably BERT. While we attempted a few other models described in this paper, our most successful model was an ensemble of transformer models including BERT, RoBERTa, XLNet, RoBERTa-large, and ALBERT. This research was performed in conjunction with the sarcasm detection shared task section in the Second Workshop on Figurative Language Processing, co-located with ACL 2020.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gregory-etal-2020-transformer">
<titleInfo>
<title>A Transformer Approach to Contextual Sarcasm Detection in Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hunter</namePart>
<namePart type="family">Gregory</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pouya</namePart>
<namePart type="family">Mohammadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Tarn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Draelos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cynthia</namePart>
<namePart type="family">Rudin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Figurative Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beata</namePart>
<namePart type="given">Beigman</namePart>
<namePart type="family">Klebanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Patricia</namePart>
<namePart type="family">Lichtenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chee</namePart>
<namePart type="family">Wee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debanjan</namePart>
<namePart type="family">Ghosh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding tone in Twitter posts will be increasingly important as more and more communication moves online. One of the most difficult, yet important tones to detect is sarcasm. In the past, LSTM and transformer architecture models have been used to tackle this problem. We attempt to expand upon this research, implementing LSTM, GRU, and transformer models, and exploring new methods to classify sarcasm in Twitter posts. Among these, the most successful were transformer models, most notably BERT. While we attempted a few other models described in this paper, our most successful model was an ensemble of transformer models including BERT, RoBERTa, XLNet, RoBERTa-large, and ALBERT. This research was performed in conjunction with the sarcasm detection shared task section in the Second Workshop on Figurative Language Processing, co-located with ACL 2020.</abstract>
<identifier type="citekey">gregory-etal-2020-transformer</identifier>
<identifier type="doi">10.18653/v1/2020.figlang-1.37</identifier>
<location>
<url>https://aclanthology.org/2020.figlang-1.37</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>270</start>
<end>275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Transformer Approach to Contextual Sarcasm Detection in Twitter
%A Gregory, Hunter
%A Li, Steven
%A Mohammadi, Pouya
%A Tarn, Natalie
%A Draelos, Rachel
%A Rudin, Cynthia
%Y Klebanov, Beata Beigman
%Y Shutova, Ekaterina
%Y Lichtenstein, Patricia
%Y Muresan, Smaranda
%Y Wee, Chee
%Y Feldman, Anna
%Y Ghosh, Debanjan
%S Proceedings of the Second Workshop on Figurative Language Processing
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F gregory-etal-2020-transformer
%X Understanding tone in Twitter posts will be increasingly important as more and more communication moves online. One of the most difficult, yet important tones to detect is sarcasm. In the past, LSTM and transformer architecture models have been used to tackle this problem. We attempt to expand upon this research, implementing LSTM, GRU, and transformer models, and exploring new methods to classify sarcasm in Twitter posts. Among these, the most successful were transformer models, most notably BERT. While we attempted a few other models described in this paper, our most successful model was an ensemble of transformer models including BERT, RoBERTa, XLNet, RoBERTa-large, and ALBERT. This research was performed in conjunction with the sarcasm detection shared task section in the Second Workshop on Figurative Language Processing, co-located with ACL 2020.
%R 10.18653/v1/2020.figlang-1.37
%U https://aclanthology.org/2020.figlang-1.37
%U https://doi.org/10.18653/v1/2020.figlang-1.37
%P 270-275
Markdown (Informal)
[A Transformer Approach to Contextual Sarcasm Detection in Twitter](https://aclanthology.org/2020.figlang-1.37) (Gregory et al., Fig-Lang 2020)
ACL