@inproceedings{xu-etal-2020-dual,
title = "Dual Reconstruction: a Unifying Objective for Semi-Supervised Neural Machine Translation",
author = "Xu, Weijia and
Niu, Xing and
Carpuat, Marine",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.182",
doi = "10.18653/v1/2020.findings-emnlp.182",
pages = "2006--2020",
abstract = "While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2020-dual">
<titleInfo>
<title>Dual Reconstruction: a Unifying Objective for Semi-Supervised Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weijia</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Niu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.</abstract>
<identifier type="citekey">xu-etal-2020-dual</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.182</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.182</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>2006</start>
<end>2020</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dual Reconstruction: a Unifying Objective for Semi-Supervised Neural Machine Translation
%A Xu, Weijia
%A Niu, Xing
%A Carpuat, Marine
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F xu-etal-2020-dual
%X While Iterative Back-Translation and Dual Learning effectively incorporate monolingual training data in neural machine translation, they use different objectives and heuristic gradient approximation strategies, and have not been extensively compared. We introduce a novel dual reconstruction objective that provides a unified view of Iterative Back-Translation and Dual Learning. It motivates a theoretical analysis and controlled empirical study on German-English and Turkish-English tasks, which both suggest that Iterative Back-Translation is more effective than Dual Learning despite its relative simplicity.
%R 10.18653/v1/2020.findings-emnlp.182
%U https://aclanthology.org/2020.findings-emnlp.182
%U https://doi.org/10.18653/v1/2020.findings-emnlp.182
%P 2006-2020
Markdown (Informal)
[Dual Reconstruction: a Unifying Objective for Semi-Supervised Neural Machine Translation](https://aclanthology.org/2020.findings-emnlp.182) (Xu et al., Findings 2020)
ACL