@inproceedings{park-etal-2020-fast,
title = "Fast End-to-end Coreference Resolution for {K}orean",
author = "Park, Cheoneum and
Shin, Jamin and
Park, Sungjoon and
Lim, Joonho and
Lee, Changki",
editor = "Cohn, Trevor and
He, Yulan and
Liu, Yang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.findings-emnlp.237",
doi = "10.18653/v1/2020.findings-emnlp.237",
pages = "2610--2624",
abstract = "Recently, end-to-end neural network-based approaches have shown significant improvements over traditional pipeline-based models in English coreference resolution. However, such advancements came at a cost of computational complexity and recent works have not focused on tackling this problem. Hence, in this paper, to cope with this issue, we propose BERT-SRU-based Pointer Networks that leverages the linguistic property of head-final languages. Applying this model to the Korean coreference resolution, we significantly reduce the coreference linking search space. Combining this with Ensemble Knowledge Distillation, we maintain state-of-the-art performance 66.9{\%} of CoNLL F1 on ETRI test set while achieving 2x speedup (30 doc/sec) in document processing time.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="park-etal-2020-fast">
<titleInfo>
<title>Fast End-to-end Coreference Resolution for Korean</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cheoneum</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamin</namePart>
<namePart type="family">Shin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sungjoon</namePart>
<namePart type="family">Park</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joonho</namePart>
<namePart type="family">Lim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Changki</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, end-to-end neural network-based approaches have shown significant improvements over traditional pipeline-based models in English coreference resolution. However, such advancements came at a cost of computational complexity and recent works have not focused on tackling this problem. Hence, in this paper, to cope with this issue, we propose BERT-SRU-based Pointer Networks that leverages the linguistic property of head-final languages. Applying this model to the Korean coreference resolution, we significantly reduce the coreference linking search space. Combining this with Ensemble Knowledge Distillation, we maintain state-of-the-art performance 66.9% of CoNLL F1 on ETRI test set while achieving 2x speedup (30 doc/sec) in document processing time.</abstract>
<identifier type="citekey">park-etal-2020-fast</identifier>
<identifier type="doi">10.18653/v1/2020.findings-emnlp.237</identifier>
<location>
<url>https://aclanthology.org/2020.findings-emnlp.237</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>2610</start>
<end>2624</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Fast End-to-end Coreference Resolution for Korean
%A Park, Cheoneum
%A Shin, Jamin
%A Park, Sungjoon
%A Lim, Joonho
%A Lee, Changki
%Y Cohn, Trevor
%Y He, Yulan
%Y Liu, Yang
%S Findings of the Association for Computational Linguistics: EMNLP 2020
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F park-etal-2020-fast
%X Recently, end-to-end neural network-based approaches have shown significant improvements over traditional pipeline-based models in English coreference resolution. However, such advancements came at a cost of computational complexity and recent works have not focused on tackling this problem. Hence, in this paper, to cope with this issue, we propose BERT-SRU-based Pointer Networks that leverages the linguistic property of head-final languages. Applying this model to the Korean coreference resolution, we significantly reduce the coreference linking search space. Combining this with Ensemble Knowledge Distillation, we maintain state-of-the-art performance 66.9% of CoNLL F1 on ETRI test set while achieving 2x speedup (30 doc/sec) in document processing time.
%R 10.18653/v1/2020.findings-emnlp.237
%U https://aclanthology.org/2020.findings-emnlp.237
%U https://doi.org/10.18653/v1/2020.findings-emnlp.237
%P 2610-2624
Markdown (Informal)
[Fast End-to-end Coreference Resolution for Korean](https://aclanthology.org/2020.findings-emnlp.237) (Park et al., Findings 2020)
ACL
- Cheoneum Park, Jamin Shin, Sungjoon Park, Joonho Lim, and Changki Lee. 2020. Fast End-to-end Coreference Resolution for Korean. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2610–2624, Online. Association for Computational Linguistics.