@inproceedings{pham-hong-chokshi-2020-pgsg,
title = "{PGSG} at {S}em{E}val-2020 Task 12: {BERT}-{LSTM} with Tweets{'} Pretrained Model and Noisy Student Training Method",
author = "Pham-Hong, Bao-Tran and
Chokshi, Setu",
editor = "Herbelot, Aurelie and
Zhu, Xiaodan and
Palmer, Alexis and
Schneider, Nathan and
May, Jonathan and
Shutova, Ekaterina",
booktitle = "Proceedings of the Fourteenth Workshop on Semantic Evaluation",
month = dec,
year = "2020",
address = "Barcelona (online)",
publisher = "International Committee for Computational Linguistics",
url = "https://aclanthology.org/2020.semeval-1.280",
doi = "10.18653/v1/2020.semeval-1.280",
pages = "2111--2116",
abstract = "The paper presents a system developed for the SemEval-2020 competition Task 12 (OffensEval-2): Multilingual Offensive Language Identification in Social Media. We achieve the second place (2nd) in sub-task B: Automatic categorization of offense types and are ranked 55th with a macro F1-score of 90.59 in sub-task A: Offensive language identification. Our solution is using a stack of BERT and LSTM layers, training with the Noisy Student method. Since the tweets data contains a large number of noisy words and slang, we update the vocabulary of the BERT large model pre-trained by the Google AI Language team. We fine-tune the model with tweet sentences provided in the challenge.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pham-hong-chokshi-2020-pgsg">
<titleInfo>
<title>PGSG at SemEval-2020 Task 12: BERT-LSTM with Tweets’ Pretrained Model and Noisy Student Training Method</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bao-Tran</namePart>
<namePart type="family">Pham-Hong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Setu</namePart>
<namePart type="family">Chokshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourteenth Workshop on Semantic Evaluation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aurelie</namePart>
<namePart type="family">Herbelot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">May</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Shutova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona (online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents a system developed for the SemEval-2020 competition Task 12 (OffensEval-2): Multilingual Offensive Language Identification in Social Media. We achieve the second place (2nd) in sub-task B: Automatic categorization of offense types and are ranked 55th with a macro F1-score of 90.59 in sub-task A: Offensive language identification. Our solution is using a stack of BERT and LSTM layers, training with the Noisy Student method. Since the tweets data contains a large number of noisy words and slang, we update the vocabulary of the BERT large model pre-trained by the Google AI Language team. We fine-tune the model with tweet sentences provided in the challenge.</abstract>
<identifier type="citekey">pham-hong-chokshi-2020-pgsg</identifier>
<identifier type="doi">10.18653/v1/2020.semeval-1.280</identifier>
<location>
<url>https://aclanthology.org/2020.semeval-1.280</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2111</start>
<end>2116</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PGSG at SemEval-2020 Task 12: BERT-LSTM with Tweets’ Pretrained Model and Noisy Student Training Method
%A Pham-Hong, Bao-Tran
%A Chokshi, Setu
%Y Herbelot, Aurelie
%Y Zhu, Xiaodan
%Y Palmer, Alexis
%Y Schneider, Nathan
%Y May, Jonathan
%Y Shutova, Ekaterina
%S Proceedings of the Fourteenth Workshop on Semantic Evaluation
%D 2020
%8 December
%I International Committee for Computational Linguistics
%C Barcelona (online)
%F pham-hong-chokshi-2020-pgsg
%X The paper presents a system developed for the SemEval-2020 competition Task 12 (OffensEval-2): Multilingual Offensive Language Identification in Social Media. We achieve the second place (2nd) in sub-task B: Automatic categorization of offense types and are ranked 55th with a macro F1-score of 90.59 in sub-task A: Offensive language identification. Our solution is using a stack of BERT and LSTM layers, training with the Noisy Student method. Since the tweets data contains a large number of noisy words and slang, we update the vocabulary of the BERT large model pre-trained by the Google AI Language team. We fine-tune the model with tweet sentences provided in the challenge.
%R 10.18653/v1/2020.semeval-1.280
%U https://aclanthology.org/2020.semeval-1.280
%U https://doi.org/10.18653/v1/2020.semeval-1.280
%P 2111-2116
Markdown (Informal)
[PGSG at SemEval-2020 Task 12: BERT-LSTM with Tweets’ Pretrained Model and Noisy Student Training Method](https://aclanthology.org/2020.semeval-1.280) (Pham-Hong & Chokshi, SemEval 2020)
ACL