@inproceedings{shi-2020-sequence,
title = "A Sequence-to-sequence Approach for Numerical Slot-filling Dialog Systems",
author = "Shi, Hongjie",
editor = "Pietquin, Olivier and
Muresan, Smaranda and
Chen, Vivian and
Kennington, Casey and
Vandyke, David and
Dethlefs, Nina and
Inoue, Koji and
Ekstedt, Erik and
Ultes, Stefan",
booktitle = "Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue",
month = jul,
year = "2020",
address = "1st virtual meeting",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.sigdial-1.34",
doi = "10.18653/v1/2020.sigdial-1.34",
pages = "272--277",
abstract = "Dialog systems capable of filling slots with numerical values have wide applicability to many task-oriented applications. In this paper, we perform a particular case study on the {``}number{\_}of{\_}guests{''} slot-filling in hotel reservation domain, and propose two methods to improve current dialog system model on 1. numerical reasoning performance by training the model to predict arithmetic expressions, and 2. multi-turn question generation by introducing additional context slots. Furthermore, because the proposed methods are all based on an end-to-end trainable sequence-to-sequence (seq2seq) neural model, it is possible to achieve further performance improvement on increasing dialog logs in the future.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shi-2020-sequence">
<titleInfo>
<title>A Sequence-to-sequence Approach for Numerical Slot-filling Dialog Systems</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongjie</namePart>
<namePart type="family">Shi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olivier</namePart>
<namePart type="family">Pietquin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivian</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Casey</namePart>
<namePart type="family">Kennington</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Vandyke</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nina</namePart>
<namePart type="family">Dethlefs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koji</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erik</namePart>
<namePart type="family">Ekstedt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefan</namePart>
<namePart type="family">Ultes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">1st virtual meeting</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Dialog systems capable of filling slots with numerical values have wide applicability to many task-oriented applications. In this paper, we perform a particular case study on the “number_of_guests” slot-filling in hotel reservation domain, and propose two methods to improve current dialog system model on 1. numerical reasoning performance by training the model to predict arithmetic expressions, and 2. multi-turn question generation by introducing additional context slots. Furthermore, because the proposed methods are all based on an end-to-end trainable sequence-to-sequence (seq2seq) neural model, it is possible to achieve further performance improvement on increasing dialog logs in the future.</abstract>
<identifier type="citekey">shi-2020-sequence</identifier>
<identifier type="doi">10.18653/v1/2020.sigdial-1.34</identifier>
<location>
<url>https://aclanthology.org/2020.sigdial-1.34</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>272</start>
<end>277</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Sequence-to-sequence Approach for Numerical Slot-filling Dialog Systems
%A Shi, Hongjie
%Y Pietquin, Olivier
%Y Muresan, Smaranda
%Y Chen, Vivian
%Y Kennington, Casey
%Y Vandyke, David
%Y Dethlefs, Nina
%Y Inoue, Koji
%Y Ekstedt, Erik
%Y Ultes, Stefan
%S Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue
%D 2020
%8 July
%I Association for Computational Linguistics
%C 1st virtual meeting
%F shi-2020-sequence
%X Dialog systems capable of filling slots with numerical values have wide applicability to many task-oriented applications. In this paper, we perform a particular case study on the “number_of_guests” slot-filling in hotel reservation domain, and propose two methods to improve current dialog system model on 1. numerical reasoning performance by training the model to predict arithmetic expressions, and 2. multi-turn question generation by introducing additional context slots. Furthermore, because the proposed methods are all based on an end-to-end trainable sequence-to-sequence (seq2seq) neural model, it is possible to achieve further performance improvement on increasing dialog logs in the future.
%R 10.18653/v1/2020.sigdial-1.34
%U https://aclanthology.org/2020.sigdial-1.34
%U https://doi.org/10.18653/v1/2020.sigdial-1.34
%P 272-277
Markdown (Informal)
[A Sequence-to-sequence Approach for Numerical Slot-filling Dialog Systems](https://aclanthology.org/2020.sigdial-1.34) (Shi, SIGDIAL 2020)
ACL