@inproceedings{sun-etal-2021-knowing,
title = "Knowing the No-match: Entity Alignment with Dangling Cases",
author = "Sun, Zequn and
Chen, Muhao and
Hu, Wei",
editor = "Zong, Chengqing and
Xia, Fei and
Li, Wenjie and
Navigli, Roberto",
booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = aug,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.acl-long.278",
doi = "10.18653/v1/2021.acl-long.278",
pages = "3582--3593",
abstract = "This paper studies a new problem setting of entity alignment for knowledge graphs (KGs). Since KGs possess different sets of entities, there could be entities that cannot find alignment across them, leading to the problem of dangling entities. As the first attempt to this problem, we construct a new dataset and design a multi-task learning framework for both entity alignment and dangling entity detection. The framework can opt to abstain from predicting alignment for the detected dangling entities. We propose three techniques for dangling entity detection that are based on the distribution of nearest-neighbor distances, i.e., nearest neighbor classification, marginal ranking and background ranking. After detecting and removing dangling entities, an incorporated entity alignment model in our framework can provide more robust alignment for remaining entities. Comprehensive experiments and analyses demonstrate the effectiveness of our framework. We further discover that the dangling entity detection module can, in turn, improve alignment learning and the final performance. The contributed resource is publicly available to foster further research.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2021-knowing">
<titleInfo>
<title>Knowing the No-match: Entity Alignment with Dangling Cases</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zequn</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhao</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenjie</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roberto</namePart>
<namePart type="family">Navigli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper studies a new problem setting of entity alignment for knowledge graphs (KGs). Since KGs possess different sets of entities, there could be entities that cannot find alignment across them, leading to the problem of dangling entities. As the first attempt to this problem, we construct a new dataset and design a multi-task learning framework for both entity alignment and dangling entity detection. The framework can opt to abstain from predicting alignment for the detected dangling entities. We propose three techniques for dangling entity detection that are based on the distribution of nearest-neighbor distances, i.e., nearest neighbor classification, marginal ranking and background ranking. After detecting and removing dangling entities, an incorporated entity alignment model in our framework can provide more robust alignment for remaining entities. Comprehensive experiments and analyses demonstrate the effectiveness of our framework. We further discover that the dangling entity detection module can, in turn, improve alignment learning and the final performance. The contributed resource is publicly available to foster further research.</abstract>
<identifier type="citekey">sun-etal-2021-knowing</identifier>
<identifier type="doi">10.18653/v1/2021.acl-long.278</identifier>
<location>
<url>https://aclanthology.org/2021.acl-long.278</url>
</location>
<part>
<date>2021-08</date>
<extent unit="page">
<start>3582</start>
<end>3593</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Knowing the No-match: Entity Alignment with Dangling Cases
%A Sun, Zequn
%A Chen, Muhao
%A Hu, Wei
%Y Zong, Chengqing
%Y Xia, Fei
%Y Li, Wenjie
%Y Navigli, Roberto
%S Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2021
%8 August
%I Association for Computational Linguistics
%C Online
%F sun-etal-2021-knowing
%X This paper studies a new problem setting of entity alignment for knowledge graphs (KGs). Since KGs possess different sets of entities, there could be entities that cannot find alignment across them, leading to the problem of dangling entities. As the first attempt to this problem, we construct a new dataset and design a multi-task learning framework for both entity alignment and dangling entity detection. The framework can opt to abstain from predicting alignment for the detected dangling entities. We propose three techniques for dangling entity detection that are based on the distribution of nearest-neighbor distances, i.e., nearest neighbor classification, marginal ranking and background ranking. After detecting and removing dangling entities, an incorporated entity alignment model in our framework can provide more robust alignment for remaining entities. Comprehensive experiments and analyses demonstrate the effectiveness of our framework. We further discover that the dangling entity detection module can, in turn, improve alignment learning and the final performance. The contributed resource is publicly available to foster further research.
%R 10.18653/v1/2021.acl-long.278
%U https://aclanthology.org/2021.acl-long.278
%U https://doi.org/10.18653/v1/2021.acl-long.278
%P 3582-3593
Markdown (Informal)
[Knowing the No-match: Entity Alignment with Dangling Cases](https://aclanthology.org/2021.acl-long.278) (Sun et al., ACL-IJCNLP 2021)
ACL
- Zequn Sun, Muhao Chen, and Wei Hu. 2021. Knowing the No-match: Entity Alignment with Dangling Cases. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 3582–3593, Online. Association for Computational Linguistics.