@inproceedings{santy-etal-2021-bertologicomix,
title = "{BERT}ologi{C}o{M}ix: How does Code-Mixing interact with Multilingual {BERT}?",
author = "Santy, Sebastin and
Srinivasan, Anirudh and
Choudhury, Monojit",
editor = "Ben-David, Eyal and
Cohen, Shay and
McDonald, Ryan and
Plank, Barbara and
Reichart, Roi and
Rotman, Guy and
Ziser, Yftah",
booktitle = "Proceedings of the Second Workshop on Domain Adaptation for NLP",
month = apr,
year = "2021",
address = "Kyiv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.adaptnlp-1.12",
pages = "111--121",
abstract = "Models such as mBERT and XLMR have shown success in solving Code-Mixed NLP tasks even though they were not exposed to such text during pretraining. Code-Mixed NLP models have relied on using synthetically generated data along with naturally occurring data to improve their performance. Finetuning mBERT on such data improves it{'}s code-mixed performance, but the benefits of using the different types of Code-Mixed data aren{'}t clear. In this paper, we study the impact of finetuning with different types of code-mixed data and outline the changes that occur to the model during such finetuning. Our findings suggest that using naturally occurring code-mixed data brings in the best performance improvement after finetuning and that finetuning with any type of code-mixed text improves the responsivity of it{'}s attention heads to code-mixed text inputs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="santy-etal-2021-bertologicomix">
<titleInfo>
<title>BERTologiCoMix: How does Code-Mixing interact with Multilingual BERT?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sebastin</namePart>
<namePart type="family">Santy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anirudh</namePart>
<namePart type="family">Srinivasan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Monojit</namePart>
<namePart type="family">Choudhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Domain Adaptation for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eyal</namePart>
<namePart type="family">Ben-David</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryan</namePart>
<namePart type="family">McDonald</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Barbara</namePart>
<namePart type="family">Plank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roi</namePart>
<namePart type="family">Reichart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Rotman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yftah</namePart>
<namePart type="family">Ziser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Kyiv, Ukraine</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Models such as mBERT and XLMR have shown success in solving Code-Mixed NLP tasks even though they were not exposed to such text during pretraining. Code-Mixed NLP models have relied on using synthetically generated data along with naturally occurring data to improve their performance. Finetuning mBERT on such data improves it’s code-mixed performance, but the benefits of using the different types of Code-Mixed data aren’t clear. In this paper, we study the impact of finetuning with different types of code-mixed data and outline the changes that occur to the model during such finetuning. Our findings suggest that using naturally occurring code-mixed data brings in the best performance improvement after finetuning and that finetuning with any type of code-mixed text improves the responsivity of it’s attention heads to code-mixed text inputs.</abstract>
<identifier type="citekey">santy-etal-2021-bertologicomix</identifier>
<location>
<url>https://aclanthology.org/2021.adaptnlp-1.12</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>111</start>
<end>121</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BERTologiCoMix: How does Code-Mixing interact with Multilingual BERT?
%A Santy, Sebastin
%A Srinivasan, Anirudh
%A Choudhury, Monojit
%Y Ben-David, Eyal
%Y Cohen, Shay
%Y McDonald, Ryan
%Y Plank, Barbara
%Y Reichart, Roi
%Y Rotman, Guy
%Y Ziser, Yftah
%S Proceedings of the Second Workshop on Domain Adaptation for NLP
%D 2021
%8 April
%I Association for Computational Linguistics
%C Kyiv, Ukraine
%F santy-etal-2021-bertologicomix
%X Models such as mBERT and XLMR have shown success in solving Code-Mixed NLP tasks even though they were not exposed to such text during pretraining. Code-Mixed NLP models have relied on using synthetically generated data along with naturally occurring data to improve their performance. Finetuning mBERT on such data improves it’s code-mixed performance, but the benefits of using the different types of Code-Mixed data aren’t clear. In this paper, we study the impact of finetuning with different types of code-mixed data and outline the changes that occur to the model during such finetuning. Our findings suggest that using naturally occurring code-mixed data brings in the best performance improvement after finetuning and that finetuning with any type of code-mixed text improves the responsivity of it’s attention heads to code-mixed text inputs.
%U https://aclanthology.org/2021.adaptnlp-1.12
%P 111-121
Markdown (Informal)
[BERTologiCoMix: How does Code-Mixing interact with Multilingual BERT?](https://aclanthology.org/2021.adaptnlp-1.12) (Santy et al., AdaptNLP 2021)
ACL