@inproceedings{yerukola-etal-2021-data,
title = "Data Augmentation for Voice-Assistant {NLU} using {BERT}-based Interchangeable Rephrase",
author = "Yerukola, Akhila and
Bretan, Mason and
Jin, Hongxia",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.159",
doi = "10.18653/v1/2021.eacl-main.159",
pages = "1852--1860",
abstract = "We introduce a data augmentation technique based on byte pair encoding and a BERT-like self-attention model to boost performance on spoken language understanding tasks. We compare and evaluate this method with a range of augmentation techniques encompassing generative models such as VAEs and performance-boosting techniques such as synonym replacement and back-translation. We show our method performs strongly on domain and intent classification tasks for a voice assistant and in a user-study focused on utterance naturalness and semantic similarity.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yerukola-etal-2021-data">
<titleInfo>
<title>Data Augmentation for Voice-Assistant NLU using BERT-based Interchangeable Rephrase</title>
</titleInfo>
<name type="personal">
<namePart type="given">Akhila</namePart>
<namePart type="family">Yerukola</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mason</namePart>
<namePart type="family">Bretan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongxia</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a data augmentation technique based on byte pair encoding and a BERT-like self-attention model to boost performance on spoken language understanding tasks. We compare and evaluate this method with a range of augmentation techniques encompassing generative models such as VAEs and performance-boosting techniques such as synonym replacement and back-translation. We show our method performs strongly on domain and intent classification tasks for a voice assistant and in a user-study focused on utterance naturalness and semantic similarity.</abstract>
<identifier type="citekey">yerukola-etal-2021-data</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.159</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.159</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>1852</start>
<end>1860</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Data Augmentation for Voice-Assistant NLU using BERT-based Interchangeable Rephrase
%A Yerukola, Akhila
%A Bretan, Mason
%A Jin, Hongxia
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F yerukola-etal-2021-data
%X We introduce a data augmentation technique based on byte pair encoding and a BERT-like self-attention model to boost performance on spoken language understanding tasks. We compare and evaluate this method with a range of augmentation techniques encompassing generative models such as VAEs and performance-boosting techniques such as synonym replacement and back-translation. We show our method performs strongly on domain and intent classification tasks for a voice assistant and in a user-study focused on utterance naturalness and semantic similarity.
%R 10.18653/v1/2021.eacl-main.159
%U https://aclanthology.org/2021.eacl-main.159
%U https://doi.org/10.18653/v1/2021.eacl-main.159
%P 1852-1860
Markdown (Informal)
[Data Augmentation for Voice-Assistant NLU using BERT-based Interchangeable Rephrase](https://aclanthology.org/2021.eacl-main.159) (Yerukola et al., EACL 2021)
ACL