@inproceedings{suadaa-etal-2021-metric,
title = "Metric-Type Identification for Multi-Level Header Numerical Tables in Scientific Papers",
author = "Suadaa, Lya Hulliyyatus and
Kamigaito, Hidetaka and
Okumura, Manabu and
Takamura, Hiroya",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.267",
doi = "10.18653/v1/2021.eacl-main.267",
pages = "3062--3071",
abstract = "Numerical tables are widely used to present experimental results in scientific papers. For table understanding, a metric-type is essential to discriminate numbers in the tables. We introduce a new information extraction task, metric-type identification from multi-level header numerical tables, and provide a dataset extracted from scientific papers consisting of header tables, captions, and metric-types. We then propose two joint-learning neural classification and generation schemes featuring pointer-generator-based and BERT-based models. Our results show that the joint models can handle both in-header and out-of-header metric-type identification problems.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="suadaa-etal-2021-metric">
<titleInfo>
<title>Metric-Type Identification for Multi-Level Header Numerical Tables in Scientific Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lya</namePart>
<namePart type="given">Hulliyyatus</namePart>
<namePart type="family">Suadaa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hidetaka</namePart>
<namePart type="family">Kamigaito</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manabu</namePart>
<namePart type="family">Okumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hiroya</namePart>
<namePart type="family">Takamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Numerical tables are widely used to present experimental results in scientific papers. For table understanding, a metric-type is essential to discriminate numbers in the tables. We introduce a new information extraction task, metric-type identification from multi-level header numerical tables, and provide a dataset extracted from scientific papers consisting of header tables, captions, and metric-types. We then propose two joint-learning neural classification and generation schemes featuring pointer-generator-based and BERT-based models. Our results show that the joint models can handle both in-header and out-of-header metric-type identification problems.</abstract>
<identifier type="citekey">suadaa-etal-2021-metric</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.267</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.267</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>3062</start>
<end>3071</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Metric-Type Identification for Multi-Level Header Numerical Tables in Scientific Papers
%A Suadaa, Lya Hulliyyatus
%A Kamigaito, Hidetaka
%A Okumura, Manabu
%A Takamura, Hiroya
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F suadaa-etal-2021-metric
%X Numerical tables are widely used to present experimental results in scientific papers. For table understanding, a metric-type is essential to discriminate numbers in the tables. We introduce a new information extraction task, metric-type identification from multi-level header numerical tables, and provide a dataset extracted from scientific papers consisting of header tables, captions, and metric-types. We then propose two joint-learning neural classification and generation schemes featuring pointer-generator-based and BERT-based models. Our results show that the joint models can handle both in-header and out-of-header metric-type identification problems.
%R 10.18653/v1/2021.eacl-main.267
%U https://aclanthology.org/2021.eacl-main.267
%U https://doi.org/10.18653/v1/2021.eacl-main.267
%P 3062-3071
Markdown (Informal)
[Metric-Type Identification for Multi-Level Header Numerical Tables in Scientific Papers](https://aclanthology.org/2021.eacl-main.267) (Suadaa et al., EACL 2021)
ACL