The Chinese Remainder Theorem for Compact, Task-Precise, Efficient and Secure Word Embeddings

Patricia Thaine, Gerald Penn


Abstract
The growing availability of powerful mobile devices and other edge devices, together with increasing regulatory and security concerns about the exchange of personal information across networks of these devices has challenged the Computational Linguistics community to develop methods that are at once fast, space-efficient, accurate and amenable to secure encoding schemes such as homomorphic encryption. Inspired by recent work that restricts floating point precision to speed up neural network training in hardware-based SIMD, we have developed a method for compressing word vector embeddings into integers using the Chinese Reminder Theorem that speeds up addition by up to 48.27% and at the same time compresses GloVe word embedding libraries by up to 25.86%. We explore the practicality of this simple approach by investigating the trade-off between precision and performance in two NLP tasks: compositional semantic relatedness and opinion target sentiment classification. We find that in both tasks, lowering floating point number precision results in negligible changes to performance.
Anthology ID:
2021.eacl-main.306
Volume:
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
Month:
April
Year:
2021
Address:
Online
Editors:
Paola Merlo, Jorg Tiedemann, Reut Tsarfaty
Venue:
EACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
3512–3521
Language:
URL:
https://aclanthology.org/2021.eacl-main.306
DOI:
10.18653/v1/2021.eacl-main.306
Bibkey:
Cite (ACL):
Patricia Thaine and Gerald Penn. 2021. The Chinese Remainder Theorem for Compact, Task-Precise, Efficient and Secure Word Embeddings. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pages 3512–3521, Online. Association for Computational Linguistics.
Cite (Informal):
The Chinese Remainder Theorem for Compact, Task-Precise, Efficient and Secure Word Embeddings (Thaine & Penn, EACL 2021)
Copy Citation:
PDF:
https://aclanthology.org/2021.eacl-main.306.pdf
Data
BiRDMPQA Opinion Corpus