@inproceedings{ye-teufel-2021-end,
title = "End-to-End Argument Mining as Biaffine Dependency Parsing",
author = "Ye, Yuxiao and
Teufel, Simone",
editor = "Merlo, Paola and
Tiedemann, Jorg and
Tsarfaty, Reut",
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume",
month = apr,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.eacl-main.55",
doi = "10.18653/v1/2021.eacl-main.55",
pages = "669--678",
abstract = "Non-neural approaches to argument mining (AM) are often pipelined and require heavy feature-engineering. In this paper, we propose a neural end-to-end approach to AM which is based on dependency parsing, in contrast to the current state-of-the-art which relies on relation extraction. Our biaffine AM dependency parser significantly outperforms the state-of-the-art, performing at F1 = 73.5{\%} for component identification and F1 = 46.4{\%} for relation identification. One of the advantages of treating AM as biaffine dependency parsing is the simple neural architecture that results. The idea of treating AM as dependency parsing is not new, but has previously been abandoned as it was lagging far behind the state-of-the-art. In a thorough analysis, we investigate the factors that contribute to the success of our model: the biaffine model itself, our representation for the dependency structure of arguments, different encoders in the biaffine model, and syntactic information additionally fed to the model. Our work demonstrates that dependency parsing for AM, an overlooked idea from the past, deserves more attention in the future.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ye-teufel-2021-end">
<titleInfo>
<title>End-to-End Argument Mining as Biaffine Dependency Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuxiao</namePart>
<namePart type="family">Ye</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Teufel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paola</namePart>
<namePart type="family">Merlo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jorg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Reut</namePart>
<namePart type="family">Tsarfaty</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Non-neural approaches to argument mining (AM) are often pipelined and require heavy feature-engineering. In this paper, we propose a neural end-to-end approach to AM which is based on dependency parsing, in contrast to the current state-of-the-art which relies on relation extraction. Our biaffine AM dependency parser significantly outperforms the state-of-the-art, performing at F1 = 73.5% for component identification and F1 = 46.4% for relation identification. One of the advantages of treating AM as biaffine dependency parsing is the simple neural architecture that results. The idea of treating AM as dependency parsing is not new, but has previously been abandoned as it was lagging far behind the state-of-the-art. In a thorough analysis, we investigate the factors that contribute to the success of our model: the biaffine model itself, our representation for the dependency structure of arguments, different encoders in the biaffine model, and syntactic information additionally fed to the model. Our work demonstrates that dependency parsing for AM, an overlooked idea from the past, deserves more attention in the future.</abstract>
<identifier type="citekey">ye-teufel-2021-end</identifier>
<identifier type="doi">10.18653/v1/2021.eacl-main.55</identifier>
<location>
<url>https://aclanthology.org/2021.eacl-main.55</url>
</location>
<part>
<date>2021-04</date>
<extent unit="page">
<start>669</start>
<end>678</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T End-to-End Argument Mining as Biaffine Dependency Parsing
%A Ye, Yuxiao
%A Teufel, Simone
%Y Merlo, Paola
%Y Tiedemann, Jorg
%Y Tsarfaty, Reut
%S Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume
%D 2021
%8 April
%I Association for Computational Linguistics
%C Online
%F ye-teufel-2021-end
%X Non-neural approaches to argument mining (AM) are often pipelined and require heavy feature-engineering. In this paper, we propose a neural end-to-end approach to AM which is based on dependency parsing, in contrast to the current state-of-the-art which relies on relation extraction. Our biaffine AM dependency parser significantly outperforms the state-of-the-art, performing at F1 = 73.5% for component identification and F1 = 46.4% for relation identification. One of the advantages of treating AM as biaffine dependency parsing is the simple neural architecture that results. The idea of treating AM as dependency parsing is not new, but has previously been abandoned as it was lagging far behind the state-of-the-art. In a thorough analysis, we investigate the factors that contribute to the success of our model: the biaffine model itself, our representation for the dependency structure of arguments, different encoders in the biaffine model, and syntactic information additionally fed to the model. Our work demonstrates that dependency parsing for AM, an overlooked idea from the past, deserves more attention in the future.
%R 10.18653/v1/2021.eacl-main.55
%U https://aclanthology.org/2021.eacl-main.55
%U https://doi.org/10.18653/v1/2021.eacl-main.55
%P 669-678
Markdown (Informal)
[End-to-End Argument Mining as Biaffine Dependency Parsing](https://aclanthology.org/2021.eacl-main.55) (Ye & Teufel, EACL 2021)
ACL