@inproceedings{kotamraju-blanco-2021-written-justifications,
title = "Written Justifications are Key to Aggregate Crowdsourced Forecasts",
author = "Kotamraju, Saketh and
Blanco, Eduardo",
editor = "Moens, Marie-Francine and
Huang, Xuanjing and
Specia, Lucia and
Yih, Scott Wen-tau",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
month = nov,
year = "2021",
address = "Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.findings-emnlp.355",
doi = "10.18653/v1/2021.findings-emnlp.355",
pages = "4206--4216",
abstract = "This paper demonstrates that aggregating crowdsourced forecasts benefits from modeling the written justifications provided by forecasters. Our experiments show that the majority and weighted vote baselines are competitive, and that the written justifications are beneficial to call a question throughout its life except in the last quarter. We also conduct an error analysis shedding light into the characteristics that make a justification unreliable.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kotamraju-blanco-2021-written-justifications">
<titleInfo>
<title>Written Justifications are Key to Aggregate Crowdsourced Forecasts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Saketh</namePart>
<namePart type="family">Kotamraju</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduardo</namePart>
<namePart type="family">Blanco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2021</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Francine</namePart>
<namePart type="family">Moens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lucia</namePart>
<namePart type="family">Specia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="given">Wen-tau</namePart>
<namePart type="family">Yih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper demonstrates that aggregating crowdsourced forecasts benefits from modeling the written justifications provided by forecasters. Our experiments show that the majority and weighted vote baselines are competitive, and that the written justifications are beneficial to call a question throughout its life except in the last quarter. We also conduct an error analysis shedding light into the characteristics that make a justification unreliable.</abstract>
<identifier type="citekey">kotamraju-blanco-2021-written-justifications</identifier>
<identifier type="doi">10.18653/v1/2021.findings-emnlp.355</identifier>
<location>
<url>https://aclanthology.org/2021.findings-emnlp.355</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>4206</start>
<end>4216</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Written Justifications are Key to Aggregate Crowdsourced Forecasts
%A Kotamraju, Saketh
%A Blanco, Eduardo
%Y Moens, Marie-Francine
%Y Huang, Xuanjing
%Y Specia, Lucia
%Y Yih, Scott Wen-tau
%S Findings of the Association for Computational Linguistics: EMNLP 2021
%D 2021
%8 November
%I Association for Computational Linguistics
%C Punta Cana, Dominican Republic
%F kotamraju-blanco-2021-written-justifications
%X This paper demonstrates that aggregating crowdsourced forecasts benefits from modeling the written justifications provided by forecasters. Our experiments show that the majority and weighted vote baselines are competitive, and that the written justifications are beneficial to call a question throughout its life except in the last quarter. We also conduct an error analysis shedding light into the characteristics that make a justification unreliable.
%R 10.18653/v1/2021.findings-emnlp.355
%U https://aclanthology.org/2021.findings-emnlp.355
%U https://doi.org/10.18653/v1/2021.findings-emnlp.355
%P 4206-4216
Markdown (Informal)
[Written Justifications are Key to Aggregate Crowdsourced Forecasts](https://aclanthology.org/2021.findings-emnlp.355) (Kotamraju & Blanco, Findings 2021)
ACL