@inproceedings{guillou-etal-2021-blindness,
title = "Blindness to Modality Helps Entailment Graph Mining",
author = "Guillou, Liane and
Bijl de Vroe, Sander and
Johnson, Mark and
Steedman, Mark",
editor = "Sedoc, Jo{\~a}o and
Rogers, Anna and
Rumshisky, Anna and
Tafreshi, Shabnam",
booktitle = "Proceedings of the Second Workshop on Insights from Negative Results in NLP",
month = nov,
year = "2021",
address = "Online and Punta Cana, Dominican Republic",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.insights-1.16",
doi = "10.18653/v1/2021.insights-1.16",
pages = "110--116",
abstract = "Understanding linguistic modality is widely seen as important for downstream tasks such as Question Answering and Knowledge Graph Population. Entailment Graph learning might also be expected to benefit from attention to modality. We build Entailment Graphs using a news corpus filtered with a modality parser, and show that stripping modal modifiers from predicates in fact increases performance. This suggests that for some tasks, the pragmatics of modal modification of predicates allows them to contribute as evidence of entailment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guillou-etal-2021-blindness">
<titleInfo>
<title>Blindness to Modality Helps Entailment Graph Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Liane</namePart>
<namePart type="family">Guillou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sander</namePart>
<namePart type="family">Bijl de Vroe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Johnson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mark</namePart>
<namePart type="family">Steedman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online and Punta Cana, Dominican Republic</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding linguistic modality is widely seen as important for downstream tasks such as Question Answering and Knowledge Graph Population. Entailment Graph learning might also be expected to benefit from attention to modality. We build Entailment Graphs using a news corpus filtered with a modality parser, and show that stripping modal modifiers from predicates in fact increases performance. This suggests that for some tasks, the pragmatics of modal modification of predicates allows them to contribute as evidence of entailment.</abstract>
<identifier type="citekey">guillou-etal-2021-blindness</identifier>
<identifier type="doi">10.18653/v1/2021.insights-1.16</identifier>
<location>
<url>https://aclanthology.org/2021.insights-1.16</url>
</location>
<part>
<date>2021-11</date>
<extent unit="page">
<start>110</start>
<end>116</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Blindness to Modality Helps Entailment Graph Mining
%A Guillou, Liane
%A Bijl de Vroe, Sander
%A Johnson, Mark
%A Steedman, Mark
%Y Sedoc, João
%Y Rogers, Anna
%Y Rumshisky, Anna
%Y Tafreshi, Shabnam
%S Proceedings of the Second Workshop on Insights from Negative Results in NLP
%D 2021
%8 November
%I Association for Computational Linguistics
%C Online and Punta Cana, Dominican Republic
%F guillou-etal-2021-blindness
%X Understanding linguistic modality is widely seen as important for downstream tasks such as Question Answering and Knowledge Graph Population. Entailment Graph learning might also be expected to benefit from attention to modality. We build Entailment Graphs using a news corpus filtered with a modality parser, and show that stripping modal modifiers from predicates in fact increases performance. This suggests that for some tasks, the pragmatics of modal modification of predicates allows them to contribute as evidence of entailment.
%R 10.18653/v1/2021.insights-1.16
%U https://aclanthology.org/2021.insights-1.16
%U https://doi.org/10.18653/v1/2021.insights-1.16
%P 110-116
Markdown (Informal)
[Blindness to Modality Helps Entailment Graph Mining](https://aclanthology.org/2021.insights-1.16) (Guillou et al., insights 2021)
ACL
- Liane Guillou, Sander Bijl de Vroe, Mark Johnson, and Mark Steedman. 2021. Blindness to Modality Helps Entailment Graph Mining. In Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 110–116, Online and Punta Cana, Dominican Republic. Association for Computational Linguistics.