@inproceedings{hung-etal-2021-ncu,
title = "{NCU}-{NLP} at {ROCLING}-2021 Shared Task: Using {M}ac{BERT} Transformers for Dimensional Sentiment Analysis",
author = "Hung, Man-Chen and
Chen, Chao-Yi and
Chen, Pin-Jung and
Lee, Lung-Hao",
editor = "Lee, Lung-Hao and
Chang, Chia-Hui and
Chen, Kuan-Yu",
booktitle = "Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)",
month = oct,
year = "2021",
address = "Taoyuan, Taiwan",
publisher = "The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)",
url = "https://aclanthology.org/2021.rocling-1.50",
pages = "380--384",
abstract = "We use the MacBERT transformers and fine-tune them to ROCLING-2021 shared tasks using the CVAT and CVAS data. We compare the performance of MacBERT with the other two transformers BERT and RoBERTa in the valence and arousal dimensions, respectively. MAE and correlation coefficient (r) were used as evaluation metrics. On ROCLING-2021 test set, our used MacBERT model achieves 0.611 of MAE and 0.904 of r in the valence dimensions; and 0.938 of MAE and 0.549 of r in the arousal dimension.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hung-etal-2021-ncu">
<titleInfo>
<title>NCU-NLP at ROCLING-2021 Shared Task: Using MacBERT Transformers for Dimensional Sentiment Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Man-Chen</namePart>
<namePart type="family">Hung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chao-Yi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pin-Jung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lung-Hao</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lung-Hao</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chia-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kuan-Yu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)</publisher>
<place>
<placeTerm type="text">Taoyuan, Taiwan</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We use the MacBERT transformers and fine-tune them to ROCLING-2021 shared tasks using the CVAT and CVAS data. We compare the performance of MacBERT with the other two transformers BERT and RoBERTa in the valence and arousal dimensions, respectively. MAE and correlation coefficient (r) were used as evaluation metrics. On ROCLING-2021 test set, our used MacBERT model achieves 0.611 of MAE and 0.904 of r in the valence dimensions; and 0.938 of MAE and 0.549 of r in the arousal dimension.</abstract>
<identifier type="citekey">hung-etal-2021-ncu</identifier>
<location>
<url>https://aclanthology.org/2021.rocling-1.50</url>
</location>
<part>
<date>2021-10</date>
<extent unit="page">
<start>380</start>
<end>384</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NCU-NLP at ROCLING-2021 Shared Task: Using MacBERT Transformers for Dimensional Sentiment Analysis
%A Hung, Man-Chen
%A Chen, Chao-Yi
%A Chen, Pin-Jung
%A Lee, Lung-Hao
%Y Lee, Lung-Hao
%Y Chang, Chia-Hui
%Y Chen, Kuan-Yu
%S Proceedings of the 33rd Conference on Computational Linguistics and Speech Processing (ROCLING 2021)
%D 2021
%8 October
%I The Association for Computational Linguistics and Chinese Language Processing (ACLCLP)
%C Taoyuan, Taiwan
%F hung-etal-2021-ncu
%X We use the MacBERT transformers and fine-tune them to ROCLING-2021 shared tasks using the CVAT and CVAS data. We compare the performance of MacBERT with the other two transformers BERT and RoBERTa in the valence and arousal dimensions, respectively. MAE and correlation coefficient (r) were used as evaluation metrics. On ROCLING-2021 test set, our used MacBERT model achieves 0.611 of MAE and 0.904 of r in the valence dimensions; and 0.938 of MAE and 0.549 of r in the arousal dimension.
%U https://aclanthology.org/2021.rocling-1.50
%P 380-384
Markdown (Informal)
[NCU-NLP at ROCLING-2021 Shared Task: Using MacBERT Transformers for Dimensional Sentiment Analysis](https://aclanthology.org/2021.rocling-1.50) (Hung et al., ROCLING 2021)
ACL