@inproceedings{vadrevu-etal-2021-xer,
title = "x{ER}: An Explainable Model for Entity Resolution using an Efficient Solution for the Clique Partitioning Problem",
author = "Vadrevu, Samhita and
Nagi, Rakesh and
Xiong, JinJun and
Hwu, Wen-mei",
editor = "Pruksachatkun, Yada and
Ramakrishna, Anil and
Chang, Kai-Wei and
Krishna, Satyapriya and
Dhamala, Jwala and
Guha, Tanaya and
Ren, Xiang",
booktitle = "Proceedings of the First Workshop on Trustworthy Natural Language Processing",
month = jun,
year = "2021",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2021.trustnlp-1.5",
doi = "10.18653/v1/2021.trustnlp-1.5",
pages = "34--44",
abstract = "In this paper, we propose a global, self- explainable solution to solve a prominent NLP problem: Entity Resolution (ER). We formu- late ER as a graph partitioning problem. Every mention of a real-world entity is represented by a node in the graph, and the pairwise sim- ilarity scores between the mentions are used to associate these nodes to exactly one clique, which represents a real-world entity in the ER domain. In this paper, we use Clique Partition- ing Problem (CPP), which is an Integer Pro- gram (IP) to formulate ER as a graph partition- ing problem and then highlight the explainable nature of this method. Since CPP is NP-Hard, we introduce an efficient solution procedure, the xER algorithm, to solve CPP as a combi- nation of finding maximal cliques in the graph and then performing generalized set packing using a novel formulation. We discuss the advantages of using xER over the traditional methods and provide the computational exper- iments and results of applying this method to ER data sets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vadrevu-etal-2021-xer">
<titleInfo>
<title>xER: An Explainable Model for Entity Resolution using an Efficient Solution for the Clique Partitioning Problem</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samhita</namePart>
<namePart type="family">Vadrevu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rakesh</namePart>
<namePart type="family">Nagi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">JinJun</namePart>
<namePart type="family">Xiong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wen-mei</namePart>
<namePart type="family">Hwu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2021-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Trustworthy Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yada</namePart>
<namePart type="family">Pruksachatkun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anil</namePart>
<namePart type="family">Ramakrishna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai-Wei</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satyapriya</namePart>
<namePart type="family">Krishna</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jwala</namePart>
<namePart type="family">Dhamala</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tanaya</namePart>
<namePart type="family">Guha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Ren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a global, self- explainable solution to solve a prominent NLP problem: Entity Resolution (ER). We formu- late ER as a graph partitioning problem. Every mention of a real-world entity is represented by a node in the graph, and the pairwise sim- ilarity scores between the mentions are used to associate these nodes to exactly one clique, which represents a real-world entity in the ER domain. In this paper, we use Clique Partition- ing Problem (CPP), which is an Integer Pro- gram (IP) to formulate ER as a graph partition- ing problem and then highlight the explainable nature of this method. Since CPP is NP-Hard, we introduce an efficient solution procedure, the xER algorithm, to solve CPP as a combi- nation of finding maximal cliques in the graph and then performing generalized set packing using a novel formulation. We discuss the advantages of using xER over the traditional methods and provide the computational exper- iments and results of applying this method to ER data sets.</abstract>
<identifier type="citekey">vadrevu-etal-2021-xer</identifier>
<identifier type="doi">10.18653/v1/2021.trustnlp-1.5</identifier>
<location>
<url>https://aclanthology.org/2021.trustnlp-1.5</url>
</location>
<part>
<date>2021-06</date>
<extent unit="page">
<start>34</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T xER: An Explainable Model for Entity Resolution using an Efficient Solution for the Clique Partitioning Problem
%A Vadrevu, Samhita
%A Nagi, Rakesh
%A Xiong, JinJun
%A Hwu, Wen-mei
%Y Pruksachatkun, Yada
%Y Ramakrishna, Anil
%Y Chang, Kai-Wei
%Y Krishna, Satyapriya
%Y Dhamala, Jwala
%Y Guha, Tanaya
%Y Ren, Xiang
%S Proceedings of the First Workshop on Trustworthy Natural Language Processing
%D 2021
%8 June
%I Association for Computational Linguistics
%C Online
%F vadrevu-etal-2021-xer
%X In this paper, we propose a global, self- explainable solution to solve a prominent NLP problem: Entity Resolution (ER). We formu- late ER as a graph partitioning problem. Every mention of a real-world entity is represented by a node in the graph, and the pairwise sim- ilarity scores between the mentions are used to associate these nodes to exactly one clique, which represents a real-world entity in the ER domain. In this paper, we use Clique Partition- ing Problem (CPP), which is an Integer Pro- gram (IP) to formulate ER as a graph partition- ing problem and then highlight the explainable nature of this method. Since CPP is NP-Hard, we introduce an efficient solution procedure, the xER algorithm, to solve CPP as a combi- nation of finding maximal cliques in the graph and then performing generalized set packing using a novel formulation. We discuss the advantages of using xER over the traditional methods and provide the computational exper- iments and results of applying this method to ER data sets.
%R 10.18653/v1/2021.trustnlp-1.5
%U https://aclanthology.org/2021.trustnlp-1.5
%U https://doi.org/10.18653/v1/2021.trustnlp-1.5
%P 34-44
Markdown (Informal)
[xER: An Explainable Model for Entity Resolution using an Efficient Solution for the Clique Partitioning Problem](https://aclanthology.org/2021.trustnlp-1.5) (Vadrevu et al., TrustNLP 2021)
ACL