@inproceedings{hudecek-dusek-2022-learning,
title = "Learning Interpretable Latent Dialogue Actions With Less Supervision",
author = "Hude{\v{c}}ek, Vojt{\v{e}}ch and
Du{\v{s}}ek, Ond{\v{r}}ej",
editor = "He, Yulan and
Ji, Heng and
Li, Sujian and
Liu, Yang and
Chang, Chua-Hui",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.24",
doi = "10.18653/v1/2022.aacl-main.24",
pages = "297--308",
abstract = "We present a novel architecture for explainable modeling of task-oriented dialogues with discrete latent variables to represent dialogue actions. Our model is based on variational recurrent neural networks (VRNN) and requires no explicit annotation of semantic information. Unlike previous works, our approach models the system and user turns separately and performs database query modeling, which makes the model applicable to task-oriented dialogues while producing easily interpretable action latent variables. We show that our model outperforms previous approaches with less supervision in terms of perplexity and BLEU on three datasets, and we propose a way to measure dialogue success without the need for expert annotation. Finally, we propose a novel way to explain semantics of the latent variables with respect to system actions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hudecek-dusek-2022-learning">
<titleInfo>
<title>Learning Interpretable Latent Dialogue Actions With Less Supervision</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vojtěch</namePart>
<namePart type="family">Hudeček</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Dušek</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heng</namePart>
<namePart type="family">Ji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chua-Hui</namePart>
<namePart type="family">Chang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online only</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a novel architecture for explainable modeling of task-oriented dialogues with discrete latent variables to represent dialogue actions. Our model is based on variational recurrent neural networks (VRNN) and requires no explicit annotation of semantic information. Unlike previous works, our approach models the system and user turns separately and performs database query modeling, which makes the model applicable to task-oriented dialogues while producing easily interpretable action latent variables. We show that our model outperforms previous approaches with less supervision in terms of perplexity and BLEU on three datasets, and we propose a way to measure dialogue success without the need for expert annotation. Finally, we propose a novel way to explain semantics of the latent variables with respect to system actions.</abstract>
<identifier type="citekey">hudecek-dusek-2022-learning</identifier>
<identifier type="doi">10.18653/v1/2022.aacl-main.24</identifier>
<location>
<url>https://aclanthology.org/2022.aacl-main.24</url>
</location>
<part>
<date>2022-11</date>
<extent unit="page">
<start>297</start>
<end>308</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Interpretable Latent Dialogue Actions With Less Supervision
%A Hudeček, Vojtěch
%A Dušek, Ondřej
%Y He, Yulan
%Y Ji, Heng
%Y Li, Sujian
%Y Liu, Yang
%Y Chang, Chua-Hui
%S Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
%D 2022
%8 November
%I Association for Computational Linguistics
%C Online only
%F hudecek-dusek-2022-learning
%X We present a novel architecture for explainable modeling of task-oriented dialogues with discrete latent variables to represent dialogue actions. Our model is based on variational recurrent neural networks (VRNN) and requires no explicit annotation of semantic information. Unlike previous works, our approach models the system and user turns separately and performs database query modeling, which makes the model applicable to task-oriented dialogues while producing easily interpretable action latent variables. We show that our model outperforms previous approaches with less supervision in terms of perplexity and BLEU on three datasets, and we propose a way to measure dialogue success without the need for expert annotation. Finally, we propose a novel way to explain semantics of the latent variables with respect to system actions.
%R 10.18653/v1/2022.aacl-main.24
%U https://aclanthology.org/2022.aacl-main.24
%U https://doi.org/10.18653/v1/2022.aacl-main.24
%P 297-308
Markdown (Informal)
[Learning Interpretable Latent Dialogue Actions With Less Supervision](https://aclanthology.org/2022.aacl-main.24) (Hudeček & Dušek, AACL-IJCNLP 2022)
ACL
- Vojtěch Hudeček and Ondřej Dušek. 2022. Learning Interpretable Latent Dialogue Actions With Less Supervision. In Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 297–308, Online only. Association for Computational Linguistics.