@inproceedings{liu-emerson-2022-learning,
title = "Learning Functional Distributional Semantics with Visual Data",
author = "Liu, Yinhong and
Emerson, Guy",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.275",
doi = "10.18653/v1/2022.acl-long.275",
pages = "3976--3988",
abstract = "Functional Distributional Semantics is a recently proposed framework for learning distributional semantics that provides linguistic interpretability. It models the meaning of a word as a binary classifier rather than a numerical vector. In this work, we propose a method to train a Functional Distributional Semantics model with grounded visual data. We train it on the Visual Genome dataset, which is closer to the kind of data encountered in human language acquisition than a large text corpus. On four external evaluation datasets, our model outperforms previous work on learning semantics from Visual Genome.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-emerson-2022-learning">
<titleInfo>
<title>Learning Functional Distributional Semantics with Visual Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yinhong</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guy</namePart>
<namePart type="family">Emerson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Functional Distributional Semantics is a recently proposed framework for learning distributional semantics that provides linguistic interpretability. It models the meaning of a word as a binary classifier rather than a numerical vector. In this work, we propose a method to train a Functional Distributional Semantics model with grounded visual data. We train it on the Visual Genome dataset, which is closer to the kind of data encountered in human language acquisition than a large text corpus. On four external evaluation datasets, our model outperforms previous work on learning semantics from Visual Genome.</abstract>
<identifier type="citekey">liu-emerson-2022-learning</identifier>
<identifier type="doi">10.18653/v1/2022.acl-long.275</identifier>
<location>
<url>https://aclanthology.org/2022.acl-long.275</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>3976</start>
<end>3988</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Functional Distributional Semantics with Visual Data
%A Liu, Yinhong
%A Emerson, Guy
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F liu-emerson-2022-learning
%X Functional Distributional Semantics is a recently proposed framework for learning distributional semantics that provides linguistic interpretability. It models the meaning of a word as a binary classifier rather than a numerical vector. In this work, we propose a method to train a Functional Distributional Semantics model with grounded visual data. We train it on the Visual Genome dataset, which is closer to the kind of data encountered in human language acquisition than a large text corpus. On four external evaluation datasets, our model outperforms previous work on learning semantics from Visual Genome.
%R 10.18653/v1/2022.acl-long.275
%U https://aclanthology.org/2022.acl-long.275
%U https://doi.org/10.18653/v1/2022.acl-long.275
%P 3976-3988
Markdown (Informal)
[Learning Functional Distributional Semantics with Visual Data](https://aclanthology.org/2022.acl-long.275) (Liu & Emerson, ACL 2022)
ACL