Incorporating Causal Analysis into Diversified and Logical Response Generation
Jiayi Liu, Wei Wei, Zhixuan Chu, Xing Gao, Ji Zhang, Tan Yan, Yulin Kang
Abstract
Although the Conditional Variational Auto-Encoder (CVAE) model can generate more diversified responses than the traditional Seq2Seq model, the responses often have low relevance with the input words or are illogical with the question. A causal analysis is carried out to study the reasons behind, and a methodology of searching for the mediators and mitigating the confounding bias in dialogues is provided. Specifically, we propose to predict the mediators to preserve relevant information and auto-regressively incorporate the mediators into generating process. Besides, a dynamic topic graph guided conditional variational auto-encoder (TGG-CVAE) model is utilized to complement the semantic space and reduce the confounding bias in responses. Extensive experiments demonstrate that the proposed model is able to generate both relevant and informative responses, and outperforms the state-of-the-art in terms of automatic metrics and human evaluations.- Anthology ID:
- 2022.coling-1.30
- Original:
- 2022.coling-1.30v1
- Version 2:
- 2022.coling-1.30v2
- Volume:
- Proceedings of the 29th International Conference on Computational Linguistics
- Month:
- October
- Year:
- 2022
- Address:
- Gyeongju, Republic of Korea
- Editors:
- Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm, Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, Seung-Hoon Na
- Venue:
- COLING
- SIG:
- Publisher:
- International Committee on Computational Linguistics
- Note:
- Pages:
- 378–388
- Language:
- URL:
- https://aclanthology.org/2022.coling-1.30
- DOI:
- Bibkey:
- Cite (ACL):
- Jiayi Liu, Wei Wei, Zhixuan Chu, Xing Gao, Ji Zhang, Tan Yan, and Yulin Kang. 2022. Incorporating Causal Analysis into Diversified and Logical Response Generation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 378–388, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.
- Cite (Informal):
- Incorporating Causal Analysis into Diversified and Logical Response Generation (Liu et al., COLING 2022)
- Copy Citation:
- PDF:
- https://aclanthology.org/2022.coling-1.30.pdf
Export citation
@inproceedings{liu-etal-2022-incorporating-causal, title = "Incorporating Causal Analysis into Diversified and Logical Response Generation", author = "Liu, Jiayi and Wei, Wei and Chu, Zhixuan and Gao, Xing and Zhang, Ji and Yan, Tan and Kang, Yulin", editor = "Calzolari, Nicoletta and Huang, Chu-Ren and Kim, Hansaem and Pustejovsky, James and Wanner, Leo and Choi, Key-Sun and Ryu, Pum-Mo and Chen, Hsin-Hsi and Donatelli, Lucia and Ji, Heng and Kurohashi, Sadao and Paggio, Patrizia and Xue, Nianwen and Kim, Seokhwan and Hahm, Younggyun and He, Zhong and Lee, Tony Kyungil and Santus, Enrico and Bond, Francis and Na, Seung-Hoon", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics", url = "https://aclanthology.org/2022.coling-1.30", pages = "378--388", abstract = "Although the Conditional Variational Auto-Encoder (CVAE) model can generate more diversified responses than the traditional Seq2Seq model, the responses often have low relevance with the input words or are illogical with the question. A causal analysis is carried out to study the reasons behind, and a methodology of searching for the mediators and mitigating the confounding bias in dialogues is provided. Specifically, we propose to predict the mediators to preserve relevant information and auto-regressively incorporate the mediators into generating process. Besides, a dynamic topic graph guided conditional variational auto-encoder (TGG-CVAE) model is utilized to complement the semantic space and reduce the confounding bias in responses. Extensive experiments demonstrate that the proposed model is able to generate both relevant and informative responses, and outperforms the state-of-the-art in terms of automatic metrics and human evaluations.", }
<?xml version="1.0" encoding="UTF-8"?> <modsCollection xmlns="http://www.loc.gov/mods/v3"> <mods ID="liu-etal-2022-incorporating-causal"> <titleInfo> <title>Incorporating Causal Analysis into Diversified and Logical Response Generation</title> </titleInfo> <name type="personal"> <namePart type="given">Jiayi</namePart> <namePart type="family">Liu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Wei</namePart> <namePart type="family">Wei</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhixuan</namePart> <namePart type="family">Chu</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Xing</namePart> <namePart type="family">Gao</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Ji</namePart> <namePart type="family">Zhang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tan</namePart> <namePart type="family">Yan</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Yulin</namePart> <namePart type="family">Kang</namePart> <role> <roleTerm authority="marcrelator" type="text">author</roleTerm> </role> </name> <originInfo> <dateIssued>2022-10</dateIssued> </originInfo> <typeOfResource>text</typeOfResource> <relatedItem type="host"> <titleInfo> <title>Proceedings of the 29th International Conference on Computational Linguistics</title> </titleInfo> <name type="personal"> <namePart type="given">Nicoletta</namePart> <namePart type="family">Calzolari</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Chu-Ren</namePart> <namePart type="family">Huang</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hansaem</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">James</namePart> <namePart type="family">Pustejovsky</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Leo</namePart> <namePart type="family">Wanner</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Key-Sun</namePart> <namePart type="family">Choi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Pum-Mo</namePart> <namePart type="family">Ryu</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Hsin-Hsi</namePart> <namePart type="family">Chen</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Lucia</namePart> <namePart type="family">Donatelli</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Heng</namePart> <namePart type="family">Ji</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Sadao</namePart> <namePart type="family">Kurohashi</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Patrizia</namePart> <namePart type="family">Paggio</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Nianwen</namePart> <namePart type="family">Xue</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seokhwan</namePart> <namePart type="family">Kim</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Younggyun</namePart> <namePart type="family">Hahm</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Zhong</namePart> <namePart type="family">He</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Tony</namePart> <namePart type="given">Kyungil</namePart> <namePart type="family">Lee</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Enrico</namePart> <namePart type="family">Santus</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Francis</namePart> <namePart type="family">Bond</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <name type="personal"> <namePart type="given">Seung-Hoon</namePart> <namePart type="family">Na</namePart> <role> <roleTerm authority="marcrelator" type="text">editor</roleTerm> </role> </name> <originInfo> <publisher>International Committee on Computational Linguistics</publisher> <place> <placeTerm type="text">Gyeongju, Republic of Korea</placeTerm> </place> </originInfo> <genre authority="marcgt">conference publication</genre> </relatedItem> <abstract>Although the Conditional Variational Auto-Encoder (CVAE) model can generate more diversified responses than the traditional Seq2Seq model, the responses often have low relevance with the input words or are illogical with the question. A causal analysis is carried out to study the reasons behind, and a methodology of searching for the mediators and mitigating the confounding bias in dialogues is provided. Specifically, we propose to predict the mediators to preserve relevant information and auto-regressively incorporate the mediators into generating process. Besides, a dynamic topic graph guided conditional variational auto-encoder (TGG-CVAE) model is utilized to complement the semantic space and reduce the confounding bias in responses. Extensive experiments demonstrate that the proposed model is able to generate both relevant and informative responses, and outperforms the state-of-the-art in terms of automatic metrics and human evaluations.</abstract> <identifier type="citekey">liu-etal-2022-incorporating-causal</identifier> <location> <url>https://aclanthology.org/2022.coling-1.30</url> </location> <part> <date>2022-10</date> <extent unit="page"> <start>378</start> <end>388</end> </extent> </part> </mods> </modsCollection>
%0 Conference Proceedings %T Incorporating Causal Analysis into Diversified and Logical Response Generation %A Liu, Jiayi %A Wei, Wei %A Chu, Zhixuan %A Gao, Xing %A Zhang, Ji %A Yan, Tan %A Kang, Yulin %Y Calzolari, Nicoletta %Y Huang, Chu-Ren %Y Kim, Hansaem %Y Pustejovsky, James %Y Wanner, Leo %Y Choi, Key-Sun %Y Ryu, Pum-Mo %Y Chen, Hsin-Hsi %Y Donatelli, Lucia %Y Ji, Heng %Y Kurohashi, Sadao %Y Paggio, Patrizia %Y Xue, Nianwen %Y Kim, Seokhwan %Y Hahm, Younggyun %Y He, Zhong %Y Lee, Tony Kyungil %Y Santus, Enrico %Y Bond, Francis %Y Na, Seung-Hoon %S Proceedings of the 29th International Conference on Computational Linguistics %D 2022 %8 October %I International Committee on Computational Linguistics %C Gyeongju, Republic of Korea %F liu-etal-2022-incorporating-causal %X Although the Conditional Variational Auto-Encoder (CVAE) model can generate more diversified responses than the traditional Seq2Seq model, the responses often have low relevance with the input words or are illogical with the question. A causal analysis is carried out to study the reasons behind, and a methodology of searching for the mediators and mitigating the confounding bias in dialogues is provided. Specifically, we propose to predict the mediators to preserve relevant information and auto-regressively incorporate the mediators into generating process. Besides, a dynamic topic graph guided conditional variational auto-encoder (TGG-CVAE) model is utilized to complement the semantic space and reduce the confounding bias in responses. Extensive experiments demonstrate that the proposed model is able to generate both relevant and informative responses, and outperforms the state-of-the-art in terms of automatic metrics and human evaluations. %U https://aclanthology.org/2022.coling-1.30 %P 378-388
Markdown (Informal)
[Incorporating Causal Analysis into Diversified and Logical Response Generation](https://aclanthology.org/2022.coling-1.30) (Liu et al., COLING 2022)
- Incorporating Causal Analysis into Diversified and Logical Response Generation (Liu et al., COLING 2022)
ACL
- Jiayi Liu, Wei Wei, Zhixuan Chu, Xing Gao, Ji Zhang, Tan Yan, and Yulin Kang. 2022. Incorporating Causal Analysis into Diversified and Logical Response Generation. In Proceedings of the 29th International Conference on Computational Linguistics, pages 378–388, Gyeongju, Republic of Korea. International Committee on Computational Linguistics.