@inproceedings{kim-kim-2022-saving,
title = "Saving Dense Retriever from Shortcut Dependency in Conversational Search",
author = "Kim, Sungdong and
Kim, Gangwoo",
editor = "Goldberg, Yoav and
Kozareva, Zornitsa and
Zhang, Yue",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
address = "Abu Dhabi, United Arab Emirates",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.emnlp-main.701",
doi = "10.18653/v1/2022.emnlp-main.701",
pages = "10278--10287",
abstract = "Conversational search (CS) needs a holistic understanding of conversational inputs to retrieve relevant passages. In this paper, we demonstrate the existence of a \textit{retrieval shortcut} in CS, which causes models to retrieve passages solely relying on partial history while disregarding the latest question. With in-depth analysis, we first show that naively trained dense retrievers heavily exploit the shortcut and hence perform poorly when asked to answer history-independent questions. To build more robust models against shortcut dependency, we explore various hard negative mining strategies. Experimental results show that training with the model-based hard negatives effectively mitigates the dependency on the shortcut, significantly improving dense retrievers on recent CS benchmarks. In particular, our retriever outperforms the previous state-of-the-art model by 11.0 in Recall@10 on QReCC.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kim-kim-2022-saving">
<titleInfo>
<title>Saving Dense Retriever from Shortcut Dependency in Conversational Search</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sungdong</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gangwoo</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zornitsa</namePart>
<namePart type="family">Kozareva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, United Arab Emirates</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Conversational search (CS) needs a holistic understanding of conversational inputs to retrieve relevant passages. In this paper, we demonstrate the existence of a retrieval shortcut in CS, which causes models to retrieve passages solely relying on partial history while disregarding the latest question. With in-depth analysis, we first show that naively trained dense retrievers heavily exploit the shortcut and hence perform poorly when asked to answer history-independent questions. To build more robust models against shortcut dependency, we explore various hard negative mining strategies. Experimental results show that training with the model-based hard negatives effectively mitigates the dependency on the shortcut, significantly improving dense retrievers on recent CS benchmarks. In particular, our retriever outperforms the previous state-of-the-art model by 11.0 in Recall@10 on QReCC.</abstract>
<identifier type="citekey">kim-kim-2022-saving</identifier>
<identifier type="doi">10.18653/v1/2022.emnlp-main.701</identifier>
<location>
<url>https://aclanthology.org/2022.emnlp-main.701</url>
</location>
<part>
<date>2022-12</date>
<extent unit="page">
<start>10278</start>
<end>10287</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Saving Dense Retriever from Shortcut Dependency in Conversational Search
%A Kim, Sungdong
%A Kim, Gangwoo
%Y Goldberg, Yoav
%Y Kozareva, Zornitsa
%Y Zhang, Yue
%S Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
%D 2022
%8 December
%I Association for Computational Linguistics
%C Abu Dhabi, United Arab Emirates
%F kim-kim-2022-saving
%X Conversational search (CS) needs a holistic understanding of conversational inputs to retrieve relevant passages. In this paper, we demonstrate the existence of a retrieval shortcut in CS, which causes models to retrieve passages solely relying on partial history while disregarding the latest question. With in-depth analysis, we first show that naively trained dense retrievers heavily exploit the shortcut and hence perform poorly when asked to answer history-independent questions. To build more robust models against shortcut dependency, we explore various hard negative mining strategies. Experimental results show that training with the model-based hard negatives effectively mitigates the dependency on the shortcut, significantly improving dense retrievers on recent CS benchmarks. In particular, our retriever outperforms the previous state-of-the-art model by 11.0 in Recall@10 on QReCC.
%R 10.18653/v1/2022.emnlp-main.701
%U https://aclanthology.org/2022.emnlp-main.701
%U https://doi.org/10.18653/v1/2022.emnlp-main.701
%P 10278-10287
Markdown (Informal)
[Saving Dense Retriever from Shortcut Dependency in Conversational Search](https://aclanthology.org/2022.emnlp-main.701) (Kim & Kim, EMNLP 2022)
ACL