@inproceedings{hiraoka-etal-2022-word,
title = "Word-level Perturbation Considering Word Length and Compositional Subwords",
author = "Hiraoka, Tatsuya and
Takase, Sho and
Uchiumi, Kei and
Keyaki, Atsushi and
Okazaki, Naoaki",
editor = "Muresan, Smaranda and
Nakov, Preslav and
Villavicencio, Aline",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.findings-acl.258",
doi = "10.18653/v1/2022.findings-acl.258",
pages = "3268--3275",
abstract = "We present two simple modifications for word-level perturbation: Word Replacement considering Length (WR-L) and Compositional Word Replacement (CWR).In conventional word replacement, a word in an input is replaced with a word sampled from the entire vocabulary, regardless of the length and context of the target word.WR-L considers the length of a target word by sampling words from the Poisson distribution.CWR considers the compositional candidates by restricting the source of sampling to related words that appear in subword regularization. Experimental results showed that the combination of WR-L and CWR improved the performance of text classification and machine translation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hiraoka-etal-2022-word">
<titleInfo>
<title>Word-level Perturbation Considering Word Length and Compositional Subwords</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tatsuya</namePart>
<namePart type="family">Hiraoka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sho</namePart>
<namePart type="family">Takase</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kei</namePart>
<namePart type="family">Uchiumi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atsushi</namePart>
<namePart type="family">Keyaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2022</title>
</titleInfo>
<name type="personal">
<namePart type="given">Smaranda</namePart>
<namePart type="family">Muresan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present two simple modifications for word-level perturbation: Word Replacement considering Length (WR-L) and Compositional Word Replacement (CWR).In conventional word replacement, a word in an input is replaced with a word sampled from the entire vocabulary, regardless of the length and context of the target word.WR-L considers the length of a target word by sampling words from the Poisson distribution.CWR considers the compositional candidates by restricting the source of sampling to related words that appear in subword regularization. Experimental results showed that the combination of WR-L and CWR improved the performance of text classification and machine translation.</abstract>
<identifier type="citekey">hiraoka-etal-2022-word</identifier>
<identifier type="doi">10.18653/v1/2022.findings-acl.258</identifier>
<location>
<url>https://aclanthology.org/2022.findings-acl.258</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>3268</start>
<end>3275</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Word-level Perturbation Considering Word Length and Compositional Subwords
%A Hiraoka, Tatsuya
%A Takase, Sho
%A Uchiumi, Kei
%A Keyaki, Atsushi
%A Okazaki, Naoaki
%Y Muresan, Smaranda
%Y Nakov, Preslav
%Y Villavicencio, Aline
%S Findings of the Association for Computational Linguistics: ACL 2022
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F hiraoka-etal-2022-word
%X We present two simple modifications for word-level perturbation: Word Replacement considering Length (WR-L) and Compositional Word Replacement (CWR).In conventional word replacement, a word in an input is replaced with a word sampled from the entire vocabulary, regardless of the length and context of the target word.WR-L considers the length of a target word by sampling words from the Poisson distribution.CWR considers the compositional candidates by restricting the source of sampling to related words that appear in subword regularization. Experimental results showed that the combination of WR-L and CWR improved the performance of text classification and machine translation.
%R 10.18653/v1/2022.findings-acl.258
%U https://aclanthology.org/2022.findings-acl.258
%U https://doi.org/10.18653/v1/2022.findings-acl.258
%P 3268-3275
Markdown (Informal)
[Word-level Perturbation Considering Word Length and Compositional Subwords](https://aclanthology.org/2022.findings-acl.258) (Hiraoka et al., Findings 2022)
ACL