@inproceedings{cignarella-etal-2022-dependency,
title = "Do Dependency Relations Help in the Task of Stance Detection?",
author = "Cignarella, Alessandra Teresa and
Bosco, Cristina and
Rosso, Paolo",
editor = "Tafreshi, Shabnam and
Sedoc, Jo{\~a}o and
Rogers, Anna and
Drozd, Aleksandr and
Rumshisky, Anna and
Akula, Arjun",
booktitle = "Proceedings of the Third Workshop on Insights from Negative Results in NLP",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.insights-1.2",
doi = "10.18653/v1/2022.insights-1.2",
pages = "10--17",
abstract = "In this paper we present a set of multilingual experiments tackling the task of Stance Detection in five different languages: English, Spanish, Catalan, French and Italian. Furthermore, we study the phenomenon of stance with respect to six different targets {--} one per language, and two different for Italian {--} employing a variety of machine learning algorithms that primarily exploit morphological and syntactic knowledge as features, represented throughout the format of Universal Dependencies. Results seem to suggest that the methodology employed is not beneficial per se, but might be useful to exploit the same features with a different methodology.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cignarella-etal-2022-dependency">
<titleInfo>
<title>Do Dependency Relations Help in the Task of Stance Detection?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessandra</namePart>
<namePart type="given">Teresa</namePart>
<namePart type="family">Cignarella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cristina</namePart>
<namePart type="family">Bosco</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paolo</namePart>
<namePart type="family">Rosso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Insights from Negative Results in NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Tafreshi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">João</namePart>
<namePart type="family">Sedoc</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Drozd</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arjun</namePart>
<namePart type="family">Akula</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dublin, Ireland</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present a set of multilingual experiments tackling the task of Stance Detection in five different languages: English, Spanish, Catalan, French and Italian. Furthermore, we study the phenomenon of stance with respect to six different targets – one per language, and two different for Italian – employing a variety of machine learning algorithms that primarily exploit morphological and syntactic knowledge as features, represented throughout the format of Universal Dependencies. Results seem to suggest that the methodology employed is not beneficial per se, but might be useful to exploit the same features with a different methodology.</abstract>
<identifier type="citekey">cignarella-etal-2022-dependency</identifier>
<identifier type="doi">10.18653/v1/2022.insights-1.2</identifier>
<location>
<url>https://aclanthology.org/2022.insights-1.2</url>
</location>
<part>
<date>2022-05</date>
<extent unit="page">
<start>10</start>
<end>17</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Do Dependency Relations Help in the Task of Stance Detection?
%A Cignarella, Alessandra Teresa
%A Bosco, Cristina
%A Rosso, Paolo
%Y Tafreshi, Shabnam
%Y Sedoc, João
%Y Rogers, Anna
%Y Drozd, Aleksandr
%Y Rumshisky, Anna
%Y Akula, Arjun
%S Proceedings of the Third Workshop on Insights from Negative Results in NLP
%D 2022
%8 May
%I Association for Computational Linguistics
%C Dublin, Ireland
%F cignarella-etal-2022-dependency
%X In this paper we present a set of multilingual experiments tackling the task of Stance Detection in five different languages: English, Spanish, Catalan, French and Italian. Furthermore, we study the phenomenon of stance with respect to six different targets – one per language, and two different for Italian – employing a variety of machine learning algorithms that primarily exploit morphological and syntactic knowledge as features, represented throughout the format of Universal Dependencies. Results seem to suggest that the methodology employed is not beneficial per se, but might be useful to exploit the same features with a different methodology.
%R 10.18653/v1/2022.insights-1.2
%U https://aclanthology.org/2022.insights-1.2
%U https://doi.org/10.18653/v1/2022.insights-1.2
%P 10-17
Markdown (Informal)
[Do Dependency Relations Help in the Task of Stance Detection?](https://aclanthology.org/2022.insights-1.2) (Cignarella et al., insights 2022)
ACL