@inproceedings{drozdov-etal-2022-inducing,
title = "Inducing and Using Alignments for Transition-based {AMR} Parsing",
author = "Drozdov, Andrew and
Zhou, Jiawei and
Florian, Radu and
McCallum, Andrew and
Naseem, Tahira and
Kim, Yoon and
Astudillo, Ram{\'o}n",
editor = "Carpuat, Marine and
de Marneffe, Marie-Catherine and
Meza Ruiz, Ivan Vladimir",
booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
month = jul,
year = "2022",
address = "Seattle, United States",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.naacl-main.80",
doi = "10.18653/v1/2022.naacl-main.80",
pages = "1086--1098",
abstract = "Transition-based parsers for Abstract Meaning Representation (AMR) rely on node-to-word alignments. These alignments are learned separately from parser training and require a complex pipeline of rule-based components, pre-processing, and post-processing to satisfy domain-specific constraints. Parsers also train on a point-estimate of the alignment pipeline, neglecting the uncertainty due to the inherent ambiguity of alignment. In this work we explore two avenues for overcoming these limitations. First, we propose a neural aligner for AMR that learns node-to-word alignments without relying on complex pipelines. We subsequently explore a tighter integration of aligner and parser training by considering a distribution over oracle action sequences arising from aligner uncertainty. Empirical results show this approach leads to more accurate alignments and generalization better from the AMR2.0 to AMR3.0 corpora. We attain a new state-of-the art for gold-only trained models, matching silver-trained performance without the need for beam search on AMR3.0.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="drozdov-etal-2022-inducing">
<titleInfo>
<title>Inducing and Using Alignments for Transition-based AMR Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">Drozdov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Radu</namePart>
<namePart type="family">Florian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrew</namePart>
<namePart type="family">McCallum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tahira</namePart>
<namePart type="family">Naseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoon</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ramón</namePart>
<namePart type="family">Astudillo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2022-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marine</namePart>
<namePart type="family">Carpuat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="given">Vladimir</namePart>
<namePart type="family">Meza Ruiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, United States</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transition-based parsers for Abstract Meaning Representation (AMR) rely on node-to-word alignments. These alignments are learned separately from parser training and require a complex pipeline of rule-based components, pre-processing, and post-processing to satisfy domain-specific constraints. Parsers also train on a point-estimate of the alignment pipeline, neglecting the uncertainty due to the inherent ambiguity of alignment. In this work we explore two avenues for overcoming these limitations. First, we propose a neural aligner for AMR that learns node-to-word alignments without relying on complex pipelines. We subsequently explore a tighter integration of aligner and parser training by considering a distribution over oracle action sequences arising from aligner uncertainty. Empirical results show this approach leads to more accurate alignments and generalization better from the AMR2.0 to AMR3.0 corpora. We attain a new state-of-the art for gold-only trained models, matching silver-trained performance without the need for beam search on AMR3.0.</abstract>
<identifier type="citekey">drozdov-etal-2022-inducing</identifier>
<identifier type="doi">10.18653/v1/2022.naacl-main.80</identifier>
<location>
<url>https://aclanthology.org/2022.naacl-main.80</url>
</location>
<part>
<date>2022-07</date>
<extent unit="page">
<start>1086</start>
<end>1098</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inducing and Using Alignments for Transition-based AMR Parsing
%A Drozdov, Andrew
%A Zhou, Jiawei
%A Florian, Radu
%A McCallum, Andrew
%A Naseem, Tahira
%A Kim, Yoon
%A Astudillo, Ramón
%Y Carpuat, Marine
%Y de Marneffe, Marie-Catherine
%Y Meza Ruiz, Ivan Vladimir
%S Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
%D 2022
%8 July
%I Association for Computational Linguistics
%C Seattle, United States
%F drozdov-etal-2022-inducing
%X Transition-based parsers for Abstract Meaning Representation (AMR) rely on node-to-word alignments. These alignments are learned separately from parser training and require a complex pipeline of rule-based components, pre-processing, and post-processing to satisfy domain-specific constraints. Parsers also train on a point-estimate of the alignment pipeline, neglecting the uncertainty due to the inherent ambiguity of alignment. In this work we explore two avenues for overcoming these limitations. First, we propose a neural aligner for AMR that learns node-to-word alignments without relying on complex pipelines. We subsequently explore a tighter integration of aligner and parser training by considering a distribution over oracle action sequences arising from aligner uncertainty. Empirical results show this approach leads to more accurate alignments and generalization better from the AMR2.0 to AMR3.0 corpora. We attain a new state-of-the art for gold-only trained models, matching silver-trained performance without the need for beam search on AMR3.0.
%R 10.18653/v1/2022.naacl-main.80
%U https://aclanthology.org/2022.naacl-main.80
%U https://doi.org/10.18653/v1/2022.naacl-main.80
%P 1086-1098
Markdown (Informal)
[Inducing and Using Alignments for Transition-based AMR Parsing](https://aclanthology.org/2022.naacl-main.80) (Drozdov et al., NAACL 2022)
ACL
- Andrew Drozdov, Jiawei Zhou, Radu Florian, Andrew McCallum, Tahira Naseem, Yoon Kim, and Ramón Astudillo. 2022. Inducing and Using Alignments for Transition-based AMR Parsing. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 1086–1098, Seattle, United States. Association for Computational Linguistics.