@inproceedings{ai-fang-2023-fly,
title = "On-the-fly Cross-lingual Masking for Multilingual Pre-training",
author = "Ai, Xi and
Fang, Bin",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-long.49",
doi = "10.18653/v1/2023.acl-long.49",
pages = "855--876",
abstract = "In multilingual pre-training with the objective of MLM (masked language modeling) on multiple monolingual corpora, multilingual models only learn cross-linguality implicitly from isomorphic spaces formed by overlapping different language spaces due to the lack of explicit cross-lingual forward pass. In this work, we present CLPM (Cross-lingual Prototype Masking), a dynamic and token-wise masking scheme, for multilingual pre-training, using a special token $[\mathcal{C}]_{x}$ to replace a random token $x$ in the input sentence. $[\mathcal{C}]_{x}$ is a cross-lingual prototype for $x$ and then forms an explicit cross-lingual forward pass. We instantiate CLPM for the multilingual pre-training phase of UNMT (unsupervised neural machine translation), and experiments show that CLPM can consistently improve the performance of UNMT models on $\{De, Ro, Ne \} \leftrightarrow En$. Beyond UNMT or bilingual tasks, we show that CLPM can consistently improve the performance of multilingual models on cross-lingual classification.",
}
ļ»æ<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ai-fang-2023-fly">
<titleInfo>
<title>On-the-fly Cross-lingual Masking for Multilingual Pre-training</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Ai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In multilingual pre-training with the objective of MLM (masked language modeling) on multiple monolingual corpora, multilingual models only learn cross-linguality implicitly from isomorphic spaces formed by overlapping different language spaces due to the lack of explicit cross-lingual forward pass. In this work, we present CLPM (Cross-lingual Prototype Masking), a dynamic and token-wise masking scheme, for multilingual pre-training, using a special token [\mathcalC]_x to replace a random token x in the input sentence. [\mathcalC]_x is a cross-lingual prototype for x and then forms an explicit cross-lingual forward pass. We instantiate CLPM for the multilingual pre-training phase of UNMT (unsupervised neural machine translation), and experiments show that CLPM can consistently improve the performance of UNMT models on {De, Ro, Ne } Å‚eftrightarrow En. Beyond UNMT or bilingual tasks, we show that CLPM can consistently improve the performance of multilingual models on cross-lingual classification.</abstract>
<identifier type="citekey">ai-fang-2023-fly</identifier>
<identifier type="doi">10.18653/v1/2023.acl-long.49</identifier>
<location>
<url>https://aclanthology.org/2023.acl-long.49</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>855</start>
<end>876</end>
</extent>
</part>
</mods>
</modsCollection>
ļ»æ%0 Conference Proceedings
%T On-the-fly Cross-lingual Masking for Multilingual Pre-training
%A Ai, Xi
%A Fang, Bin
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F ai-fang-2023-fly
%X In multilingual pre-training with the objective of MLM (masked language modeling) on multiple monolingual corpora, multilingual models only learn cross-linguality implicitly from isomorphic spaces formed by overlapping different language spaces due to the lack of explicit cross-lingual forward pass. In this work, we present CLPM (Cross-lingual Prototype Masking), a dynamic and token-wise masking scheme, for multilingual pre-training, using a special token [\mathcalC]_x to replace a random token x in the input sentence. [\mathcalC]_x is a cross-lingual prototype for x and then forms an explicit cross-lingual forward pass. We instantiate CLPM for the multilingual pre-training phase of UNMT (unsupervised neural machine translation), and experiments show that CLPM can consistently improve the performance of UNMT models on {De, Ro, Ne } Å‚eftrightarrow En. Beyond UNMT or bilingual tasks, we show that CLPM can consistently improve the performance of multilingual models on cross-lingual classification.
%R 10.18653/v1/2023.acl-long.49
%U https://aclanthology.org/2023.acl-long.49
%U https://doi.org/10.18653/v1/2023.acl-long.49
%P 855-876
Markdown (Informal)
[On-the-fly Cross-lingual Masking for Multilingual Pre-training](https://aclanthology.org/2023.acl-long.49) (Ai & Fang, ACL 2023)
ACL