@inproceedings{li-etal-2023-well,
title = "How Well Apply Simple {MLP} to Incomplete Utterance Rewriting?",
author = "Li, Jiang and
Su, Xiangdong and
Ma, Xinlan and
Gao, Guanglai",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.acl-short.134",
doi = "10.18653/v1/2023.acl-short.134",
pages = "1567--1576",
abstract = "Incomplete utterance rewriting (IUR) aims to restore the incomplete utterance with sufficient context information for comprehension. This paper introduces a simple yet efficient IUR method. Different from prior studies, we first employ only one-layer \textbf{M}LP architecture to mine latent semantic information between joint utterances for \textbf{IUR} task (\textbf{MIUR}). After that, we conduct a joint feature matrix to predict the token type and thus restore the incomplete utterance. The well-designed network and simple architecture make our method significantly superior to existing methods in terms of quality and inference speedOur code is available at \url{https://github.com/IMU-MachineLearningSXD/MIUR}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2023-well">
<titleInfo>
<title>How Well Apply Simple MLP to Incomplete Utterance Rewriting?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangdong</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinlan</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guanglai</namePart>
<namePart type="family">Gao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Incomplete utterance rewriting (IUR) aims to restore the incomplete utterance with sufficient context information for comprehension. This paper introduces a simple yet efficient IUR method. Different from prior studies, we first employ only one-layer MLP architecture to mine latent semantic information between joint utterances for IUR task (MIUR). After that, we conduct a joint feature matrix to predict the token type and thus restore the incomplete utterance. The well-designed network and simple architecture make our method significantly superior to existing methods in terms of quality and inference speedOur code is available at https://github.com/IMU-MachineLearningSXD/MIUR.</abstract>
<identifier type="citekey">li-etal-2023-well</identifier>
<identifier type="doi">10.18653/v1/2023.acl-short.134</identifier>
<location>
<url>https://aclanthology.org/2023.acl-short.134</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>1567</start>
<end>1576</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T How Well Apply Simple MLP to Incomplete Utterance Rewriting?
%A Li, Jiang
%A Su, Xiangdong
%A Ma, Xinlan
%A Gao, Guanglai
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F li-etal-2023-well
%X Incomplete utterance rewriting (IUR) aims to restore the incomplete utterance with sufficient context information for comprehension. This paper introduces a simple yet efficient IUR method. Different from prior studies, we first employ only one-layer MLP architecture to mine latent semantic information between joint utterances for IUR task (MIUR). After that, we conduct a joint feature matrix to predict the token type and thus restore the incomplete utterance. The well-designed network and simple architecture make our method significantly superior to existing methods in terms of quality and inference speedOur code is available at https://github.com/IMU-MachineLearningSXD/MIUR.
%R 10.18653/v1/2023.acl-short.134
%U https://aclanthology.org/2023.acl-short.134
%U https://doi.org/10.18653/v1/2023.acl-short.134
%P 1567-1576
Markdown (Informal)
[How Well Apply Simple MLP to Incomplete Utterance Rewriting?](https://aclanthology.org/2023.acl-short.134) (Li et al., ACL 2023)
ACL
- Jiang Li, Xiangdong Su, Xinlan Ma, and Guanglai Gao. 2023. How Well Apply Simple MLP to Incomplete Utterance Rewriting?. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 1567–1576, Toronto, Canada. Association for Computational Linguistics.