@inproceedings{huang-etal-2023-ccl23,
title = "{CCL}23-Eval 任务3系统报告:基于多任务pipeline策略的汉语框架语义解析(System Report for {CCL}23-Eval Task 3: {C}hinese Frame Semantic Parsing Based on Multi task Pipeline Strategy)",
author = "Huang, Shutan and
Shao, Qiuyan and
Li, Wei",
editor = "Sun, Maosong and
Qin, Bing and
Qiu, Xipeng and
Jiang, Jing and
Han, Xianpei",
booktitle = "Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)",
month = aug,
year = "2023",
address = "Harbin, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2023.ccl-3.10",
pages = "105--112",
abstract = "{``}本论文为2023届CCL汉语框架语义解析评测任务提供了实现方法。针对汉语框架语义解析任务是多任务的特点,考虑到各子任务之间具有较强的时序性和关联性,方法采用了多任务pipeline策略的框架结构,主要由框架分类,论元识别,角色分类三个子模块组成,分别对应框架识别,论元范围识别,论元角色识别三个子任务。本文将框架识别和论元角色识别任务建模为文本分类任务,将论元范围识别任务建模为实体识别任务。考虑到各子任务之间具有较强的时序性和关联性,方法在每个模块均充分考虑了如何利用完成其他子任务时所抽取到的特征和信息。比如在进行角色分类时,利用了框架分类模块识别出的框架类别,以及论元识别模块识别出的论元范围。考虑到目标词及其上下文语境的重要性,本文使用预训练语言模型进行finetune。观察到模型的表现不稳定,训练时使用了对抗训练等策略提升模型性能。最终A榜分数值达到71.91,B榜分数值达到70.60,排名第2,验证了本文方法的有效性。{''}",
language = "Chinese",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="huang-etal-2023-ccl23">
<titleInfo>
<title>CCL23-Eval 任务3系统报告:基于多任务pipeline策略的汉语框架语义解析(System Report for CCL23-Eval Task 3: Chinese Frame Semantic Parsing Based on Multi task Pipeline Strategy)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shutan</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qiuyan</namePart>
<namePart type="family">Shao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">Chinese</languageTerm>
<languageTerm type="code" authority="iso639-2b">chi</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bing</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xipeng</namePart>
<namePart type="family">Qiu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jing</namePart>
<namePart type="family">Jiang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xianpei</namePart>
<namePart type="family">Han</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Harbin, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>“本论文为2023届CCL汉语框架语义解析评测任务提供了实现方法。针对汉语框架语义解析任务是多任务的特点,考虑到各子任务之间具有较强的时序性和关联性,方法采用了多任务pipeline策略的框架结构,主要由框架分类,论元识别,角色分类三个子模块组成,分别对应框架识别,论元范围识别,论元角色识别三个子任务。本文将框架识别和论元角色识别任务建模为文本分类任务,将论元范围识别任务建模为实体识别任务。考虑到各子任务之间具有较强的时序性和关联性,方法在每个模块均充分考虑了如何利用完成其他子任务时所抽取到的特征和信息。比如在进行角色分类时,利用了框架分类模块识别出的框架类别,以及论元识别模块识别出的论元范围。考虑到目标词及其上下文语境的重要性,本文使用预训练语言模型进行finetune。观察到模型的表现不稳定,训练时使用了对抗训练等策略提升模型性能。最终A榜分数值达到71.91,B榜分数值达到70.60,排名第2,验证了本文方法的有效性。”</abstract>
<identifier type="citekey">huang-etal-2023-ccl23</identifier>
<location>
<url>https://aclanthology.org/2023.ccl-3.10</url>
</location>
<part>
<date>2023-08</date>
<extent unit="page">
<start>105</start>
<end>112</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CCL23-Eval 任务3系统报告:基于多任务pipeline策略的汉语框架语义解析(System Report for CCL23-Eval Task 3: Chinese Frame Semantic Parsing Based on Multi task Pipeline Strategy)
%A Huang, Shutan
%A Shao, Qiuyan
%A Li, Wei
%Y Sun, Maosong
%Y Qin, Bing
%Y Qiu, Xipeng
%Y Jiang, Jing
%Y Han, Xianpei
%S Proceedings of the 22nd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)
%D 2023
%8 August
%I Chinese Information Processing Society of China
%C Harbin, China
%G Chinese
%F huang-etal-2023-ccl23
%X “本论文为2023届CCL汉语框架语义解析评测任务提供了实现方法。针对汉语框架语义解析任务是多任务的特点,考虑到各子任务之间具有较强的时序性和关联性,方法采用了多任务pipeline策略的框架结构,主要由框架分类,论元识别,角色分类三个子模块组成,分别对应框架识别,论元范围识别,论元角色识别三个子任务。本文将框架识别和论元角色识别任务建模为文本分类任务,将论元范围识别任务建模为实体识别任务。考虑到各子任务之间具有较强的时序性和关联性,方法在每个模块均充分考虑了如何利用完成其他子任务时所抽取到的特征和信息。比如在进行角色分类时,利用了框架分类模块识别出的框架类别,以及论元识别模块识别出的论元范围。考虑到目标词及其上下文语境的重要性,本文使用预训练语言模型进行finetune。观察到模型的表现不稳定,训练时使用了对抗训练等策略提升模型性能。最终A榜分数值达到71.91,B榜分数值达到70.60,排名第2,验证了本文方法的有效性。”
%U https://aclanthology.org/2023.ccl-3.10
%P 105-112
Markdown (Informal)
[CCL23-Eval 任务3系统报告:基于多任务pipeline策略的汉语框架语义解析(System Report for CCL23-Eval Task 3: Chinese Frame Semantic Parsing Based on Multi task Pipeline Strategy)](https://aclanthology.org/2023.ccl-3.10) (Huang et al., CCL 2023)
ACL