@inproceedings{liu-etal-2023-covid,
title = "{COVID}-{VTS}: Fact Extraction and Verification on Short Video Platforms",
author = "Liu, Fuxiao and
Yacoob, Yaser and
Shrivastava, Abhinav",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.14",
doi = "10.18653/v1/2023.eacl-main.14",
pages = "178--188",
abstract = "We introduce a new benchmark, COVID-VTS, for fact-checking multi-modal information involving short-duration videos with COVID19- focused information from both the real world and machine generation. We propose, TwtrDetective, an effective model incorporating cross-media consistency checking to detect token-level malicious tampering in different modalities, and generate explanations. Due to the scarcity of training data, we also develop an efficient and scalable approach to automatically generate misleading video posts by event manipulation or adversarial matching. We investigate several state-of-the-art models and demonstrate the superiority of TwtrDetective.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2023-covid">
<titleInfo>
<title>COVID-VTS: Fact Extraction and Verification on Short Video Platforms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Fuxiao</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Yacoob</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Shrivastava</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We introduce a new benchmark, COVID-VTS, for fact-checking multi-modal information involving short-duration videos with COVID19- focused information from both the real world and machine generation. We propose, TwtrDetective, an effective model incorporating cross-media consistency checking to detect token-level malicious tampering in different modalities, and generate explanations. Due to the scarcity of training data, we also develop an efficient and scalable approach to automatically generate misleading video posts by event manipulation or adversarial matching. We investigate several state-of-the-art models and demonstrate the superiority of TwtrDetective.</abstract>
<identifier type="citekey">liu-etal-2023-covid</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-main.14</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-main.14</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>178</start>
<end>188</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T COVID-VTS: Fact Extraction and Verification on Short Video Platforms
%A Liu, Fuxiao
%A Yacoob, Yaser
%A Shrivastava, Abhinav
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F liu-etal-2023-covid
%X We introduce a new benchmark, COVID-VTS, for fact-checking multi-modal information involving short-duration videos with COVID19- focused information from both the real world and machine generation. We propose, TwtrDetective, an effective model incorporating cross-media consistency checking to detect token-level malicious tampering in different modalities, and generate explanations. Due to the scarcity of training data, we also develop an efficient and scalable approach to automatically generate misleading video posts by event manipulation or adversarial matching. We investigate several state-of-the-art models and demonstrate the superiority of TwtrDetective.
%R 10.18653/v1/2023.eacl-main.14
%U https://aclanthology.org/2023.eacl-main.14
%U https://doi.org/10.18653/v1/2023.eacl-main.14
%P 178-188
Markdown (Informal)
[COVID-VTS: Fact Extraction and Verification on Short Video Platforms](https://aclanthology.org/2023.eacl-main.14) (Liu et al., EACL 2023)
ACL