@inproceedings{yang-etal-2023-longtriever,
title = "Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval",
author = "Yang, Junhan and
Liu, Zheng and
Li, Chaozhuo and
Sun, Guangzhong and
Xie, Xing",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.223",
doi = "10.18653/v1/2023.emnlp-main.223",
pages = "3655--3665",
abstract = "Pre-trained language models (PLMs) have achieved the preeminent position in dense retrieval due to their powerful capacity in modeling intrinsic semantics. However, most existing PLM-based retrieval models encounter substantial computational costs and are infeasible for processing long documents. In this paper, a novel retrieval model Longtriever is proposed to embrace three core challenges of long document retrieval: substantial computational cost, incomprehensive document understanding, and scarce annotations. Longtriever splits long documents into short blocks and then efficiently models the local semantics within a block and the global context semantics across blocks in a tightly-coupled manner. A pre-training phase is further proposed to empower Longtriever to achieve a better understanding of underlying semantic correlations. Experimental results on two popular benchmark datasets demonstrate the superiority of our proposal.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2023-longtriever">
<titleInfo>
<title>Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Junhan</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chaozhuo</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guangzhong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xing</namePart>
<namePart type="family">Xie</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Pre-trained language models (PLMs) have achieved the preeminent position in dense retrieval due to their powerful capacity in modeling intrinsic semantics. However, most existing PLM-based retrieval models encounter substantial computational costs and are infeasible for processing long documents. In this paper, a novel retrieval model Longtriever is proposed to embrace three core challenges of long document retrieval: substantial computational cost, incomprehensive document understanding, and scarce annotations. Longtriever splits long documents into short blocks and then efficiently models the local semantics within a block and the global context semantics across blocks in a tightly-coupled manner. A pre-training phase is further proposed to empower Longtriever to achieve a better understanding of underlying semantic correlations. Experimental results on two popular benchmark datasets demonstrate the superiority of our proposal.</abstract>
<identifier type="citekey">yang-etal-2023-longtriever</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.223</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.223</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>3655</start>
<end>3665</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval
%A Yang, Junhan
%A Liu, Zheng
%A Li, Chaozhuo
%A Sun, Guangzhong
%A Xie, Xing
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F yang-etal-2023-longtriever
%X Pre-trained language models (PLMs) have achieved the preeminent position in dense retrieval due to their powerful capacity in modeling intrinsic semantics. However, most existing PLM-based retrieval models encounter substantial computational costs and are infeasible for processing long documents. In this paper, a novel retrieval model Longtriever is proposed to embrace three core challenges of long document retrieval: substantial computational cost, incomprehensive document understanding, and scarce annotations. Longtriever splits long documents into short blocks and then efficiently models the local semantics within a block and the global context semantics across blocks in a tightly-coupled manner. A pre-training phase is further proposed to empower Longtriever to achieve a better understanding of underlying semantic correlations. Experimental results on two popular benchmark datasets demonstrate the superiority of our proposal.
%R 10.18653/v1/2023.emnlp-main.223
%U https://aclanthology.org/2023.emnlp-main.223
%U https://doi.org/10.18653/v1/2023.emnlp-main.223
%P 3655-3665
Markdown (Informal)
[Longtriever: a Pre-trained Long Text Encoder for Dense Document Retrieval](https://aclanthology.org/2023.emnlp-main.223) (Yang et al., EMNLP 2023)
ACL