@inproceedings{zhu-etal-2023-chain,
title = "Chain-of-Questions Training with Latent Answers for Robust Multistep Question Answering",
author = "Zhu, Wang and
Thomason, Jesse and
Jia, Robin",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.emnlp-main.547",
doi = "10.18653/v1/2023.emnlp-main.547",
pages = "8845--8860",
abstract = "We propose Chain-of-Questions, a framework that trains a model to robustly answer multistep questions by generating and answering sub-questions. We obtain supervision for sub-questions from human-annotated question decomposition meaning representation (QDMR), but QDMR does not include annotated answers to sub-questions. To overcome this technical challenge, we treat sub-answers as latent variables and infer them with a novel dynamic mixture of Hard-EM and MAPO. Chain-of-Questions is effective and robust, greatly outperforming strong neuro-symbolic methods by 9.0 F1 on a DROP contrast set and GPT-3.5 by 24.3 F1 on a HotpotQA adversarial set.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2023-chain">
<titleInfo>
<title>Chain-of-Questions Training with Latent Answers for Robust Multistep Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wang</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jesse</namePart>
<namePart type="family">Thomason</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robin</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose Chain-of-Questions, a framework that trains a model to robustly answer multistep questions by generating and answering sub-questions. We obtain supervision for sub-questions from human-annotated question decomposition meaning representation (QDMR), but QDMR does not include annotated answers to sub-questions. To overcome this technical challenge, we treat sub-answers as latent variables and infer them with a novel dynamic mixture of Hard-EM and MAPO. Chain-of-Questions is effective and robust, greatly outperforming strong neuro-symbolic methods by 9.0 F1 on a DROP contrast set and GPT-3.5 by 24.3 F1 on a HotpotQA adversarial set.</abstract>
<identifier type="citekey">zhu-etal-2023-chain</identifier>
<identifier type="doi">10.18653/v1/2023.emnlp-main.547</identifier>
<location>
<url>https://aclanthology.org/2023.emnlp-main.547</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>8845</start>
<end>8860</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chain-of-Questions Training with Latent Answers for Robust Multistep Question Answering
%A Zhu, Wang
%A Thomason, Jesse
%A Jia, Robin
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F zhu-etal-2023-chain
%X We propose Chain-of-Questions, a framework that trains a model to robustly answer multistep questions by generating and answering sub-questions. We obtain supervision for sub-questions from human-annotated question decomposition meaning representation (QDMR), but QDMR does not include annotated answers to sub-questions. To overcome this technical challenge, we treat sub-answers as latent variables and infer them with a novel dynamic mixture of Hard-EM and MAPO. Chain-of-Questions is effective and robust, greatly outperforming strong neuro-symbolic methods by 9.0 F1 on a DROP contrast set and GPT-3.5 by 24.3 F1 on a HotpotQA adversarial set.
%R 10.18653/v1/2023.emnlp-main.547
%U https://aclanthology.org/2023.emnlp-main.547
%U https://doi.org/10.18653/v1/2023.emnlp-main.547
%P 8845-8860
Markdown (Informal)
[Chain-of-Questions Training with Latent Answers for Robust Multistep Question Answering](https://aclanthology.org/2023.emnlp-main.547) (Zhu et al., EMNLP 2023)
ACL