@inproceedings{yamada-etal-2023-acquiring,
title = "Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic Frame Induction",
author = "Yamada, Kosuke and
Sasano, Ryohei and
Takeda, Koichi",
editor = "Rogers, Anna and
Boyd-Graber, Jordan and
Okazaki, Naoaki",
booktitle = "Findings of the Association for Computational Linguistics: ACL 2023",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-acl.596",
doi = "10.18653/v1/2023.findings-acl.596",
pages = "9356--9364",
abstract = "The semantic frame induction tasks are defined as a clustering of words into the frames that they evoke, and a clustering of their arguments according to the frame element roles that they should fill. In this paper, we address the latter task of argument clustering, which aims to acquire frame element knowledge, and propose a method that applies deep metric learning. In this method, a pre-trained language model is fine-tuned to be suitable for distinguishing frame element roles through the use of frame-annotated data, and argument clustering is performed with embeddings obtained from the fine-tuned model. Experimental results on FrameNet demonstrate that our method achieves substantially better performance than existing methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yamada-etal-2023-acquiring">
<titleInfo>
<title>Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic Frame Induction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kosuke</namePart>
<namePart type="family">Yamada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ryohei</namePart>
<namePart type="family">Sasano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichi</namePart>
<namePart type="family">Takeda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: ACL 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rogers</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jordan</namePart>
<namePart type="family">Boyd-Graber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoaki</namePart>
<namePart type="family">Okazaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The semantic frame induction tasks are defined as a clustering of words into the frames that they evoke, and a clustering of their arguments according to the frame element roles that they should fill. In this paper, we address the latter task of argument clustering, which aims to acquire frame element knowledge, and propose a method that applies deep metric learning. In this method, a pre-trained language model is fine-tuned to be suitable for distinguishing frame element roles through the use of frame-annotated data, and argument clustering is performed with embeddings obtained from the fine-tuned model. Experimental results on FrameNet demonstrate that our method achieves substantially better performance than existing methods.</abstract>
<identifier type="citekey">yamada-etal-2023-acquiring</identifier>
<identifier type="doi">10.18653/v1/2023.findings-acl.596</identifier>
<location>
<url>https://aclanthology.org/2023.findings-acl.596</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>9356</start>
<end>9364</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic Frame Induction
%A Yamada, Kosuke
%A Sasano, Ryohei
%A Takeda, Koichi
%Y Rogers, Anna
%Y Boyd-Graber, Jordan
%Y Okazaki, Naoaki
%S Findings of the Association for Computational Linguistics: ACL 2023
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F yamada-etal-2023-acquiring
%X The semantic frame induction tasks are defined as a clustering of words into the frames that they evoke, and a clustering of their arguments according to the frame element roles that they should fill. In this paper, we address the latter task of argument clustering, which aims to acquire frame element knowledge, and propose a method that applies deep metric learning. In this method, a pre-trained language model is fine-tuned to be suitable for distinguishing frame element roles through the use of frame-annotated data, and argument clustering is performed with embeddings obtained from the fine-tuned model. Experimental results on FrameNet demonstrate that our method achieves substantially better performance than existing methods.
%R 10.18653/v1/2023.findings-acl.596
%U https://aclanthology.org/2023.findings-acl.596
%U https://doi.org/10.18653/v1/2023.findings-acl.596
%P 9356-9364
Markdown (Informal)
[Acquiring Frame Element Knowledge with Deep Metric Learning for Semantic Frame Induction](https://aclanthology.org/2023.findings-acl.596) (Yamada et al., Findings 2023)
ACL