@inproceedings{sharma-etal-2023-late,
title = "Late Fusion of Transformers for Sentiment Analysis of Code-Switched Data",
author = "Sharma, Gagan and
Chinmay, R and
Sharma, Raksha",
editor = "Bouamor, Houda and
Pino, Juan and
Bali, Kalika",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2023",
month = dec,
year = "2023",
address = "Singapore",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.findings-emnlp.430",
doi = "10.18653/v1/2023.findings-emnlp.430",
pages = "6485--6490",
abstract = "Code-switching is a common phenomenon in multilingual communities and is often used on social media. However, sentiment analysis of code-switched data is a challenging yet less explored area of research. This paper aims to develop a sentiment analysis system for code-switched data. In this paper, we present a novel approach combining two transformers using logits of their output and feeding them to a neural network for classification. We show the efficacy of our approach using two benchmark datasets, viz., English-Hindi (En-Hi), and English-Spanish (En-Es) availed by Microsoft GLUECoS. Our approach results in an F1 score of 73.66{\%} for En-Es and 61.24{\%} for En-Hi, significantly higher than the best model reported for the GLUECoS benchmark dataset.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sharma-etal-2023-late">
<titleInfo>
<title>Late Fusion of Transformers for Sentiment Analysis of Code-Switched Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gagan</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="family">Chinmay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raksha</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: EMNLP 2023</title>
</titleInfo>
<name type="personal">
<namePart type="given">Houda</namePart>
<namePart type="family">Bouamor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="family">Pino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kalika</namePart>
<namePart type="family">Bali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Code-switching is a common phenomenon in multilingual communities and is often used on social media. However, sentiment analysis of code-switched data is a challenging yet less explored area of research. This paper aims to develop a sentiment analysis system for code-switched data. In this paper, we present a novel approach combining two transformers using logits of their output and feeding them to a neural network for classification. We show the efficacy of our approach using two benchmark datasets, viz., English-Hindi (En-Hi), and English-Spanish (En-Es) availed by Microsoft GLUECoS. Our approach results in an F1 score of 73.66% for En-Es and 61.24% for En-Hi, significantly higher than the best model reported for the GLUECoS benchmark dataset.</abstract>
<identifier type="citekey">sharma-etal-2023-late</identifier>
<identifier type="doi">10.18653/v1/2023.findings-emnlp.430</identifier>
<location>
<url>https://aclanthology.org/2023.findings-emnlp.430</url>
</location>
<part>
<date>2023-12</date>
<extent unit="page">
<start>6485</start>
<end>6490</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Late Fusion of Transformers for Sentiment Analysis of Code-Switched Data
%A Sharma, Gagan
%A Chinmay, R.
%A Sharma, Raksha
%Y Bouamor, Houda
%Y Pino, Juan
%Y Bali, Kalika
%S Findings of the Association for Computational Linguistics: EMNLP 2023
%D 2023
%8 December
%I Association for Computational Linguistics
%C Singapore
%F sharma-etal-2023-late
%X Code-switching is a common phenomenon in multilingual communities and is often used on social media. However, sentiment analysis of code-switched data is a challenging yet less explored area of research. This paper aims to develop a sentiment analysis system for code-switched data. In this paper, we present a novel approach combining two transformers using logits of their output and feeding them to a neural network for classification. We show the efficacy of our approach using two benchmark datasets, viz., English-Hindi (En-Hi), and English-Spanish (En-Es) availed by Microsoft GLUECoS. Our approach results in an F1 score of 73.66% for En-Es and 61.24% for En-Hi, significantly higher than the best model reported for the GLUECoS benchmark dataset.
%R 10.18653/v1/2023.findings-emnlp.430
%U https://aclanthology.org/2023.findings-emnlp.430
%U https://doi.org/10.18653/v1/2023.findings-emnlp.430
%P 6485-6490
Markdown (Informal)
[Late Fusion of Transformers for Sentiment Analysis of Code-Switched Data](https://aclanthology.org/2023.findings-emnlp.430) (Sharma et al., Findings 2023)
ACL