@inproceedings{liu-etal-2023-seeking,
title = "Seeking Clozure: Robust Hypernym extraction from {BERT} with Anchored Prompts",
author = "Liu, Chunhua and
Cohn, Trevor and
Frermann, Lea",
editor = "Palmer, Alexis and
Camacho-collados, Jose",
booktitle = "Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)",
month = jul,
year = "2023",
address = "Toronto, Canada",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.starsem-1.18",
doi = "10.18653/v1/2023.starsem-1.18",
pages = "193--206",
abstract = "The automatic extraction of hypernym knowledge from large language models like BERT is an open problem, and it is unclear whether methods fail due to a lack of knowledge in the model or shortcomings of the extraction methods. In particular, methods fail on challenging cases which include rare or abstract concepts, and perform inconsistently under paraphrased prompts. In this study, we revisit the long line of work on pattern-based hypernym extraction, and use it as a diagnostic tool to thoroughly examine the hypernomy knowledge encoded in BERT and the limitations of hypernym extraction methods. We propose to construct prompts from established pattern structures: definitional (X is a Y); lexico-syntactic (Y such as X); and their anchored versions (Y such as X or Z). We devise an automatic method for anchor prediction, and compare different patterns in: (i) their effectiveness for hypernym retrieval from BERT across six English data sets; (ii) on challenge sets of rare and abstract concepts; and (iii) on consistency under paraphrasing. We show that anchoring is particularly useful for abstract concepts and in enhancing consistency across paraphrases, demonstrating how established methods in the field can inform prompt engineering.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2023-seeking">
<titleInfo>
<title>Seeking Clozure: Robust Hypernym extraction from BERT with Anchored Prompts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chunhua</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trevor</namePart>
<namePart type="family">Cohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lea</namePart>
<namePart type="family">Frermann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexis</namePart>
<namePart type="family">Palmer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jose</namePart>
<namePart type="family">Camacho-collados</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Toronto, Canada</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The automatic extraction of hypernym knowledge from large language models like BERT is an open problem, and it is unclear whether methods fail due to a lack of knowledge in the model or shortcomings of the extraction methods. In particular, methods fail on challenging cases which include rare or abstract concepts, and perform inconsistently under paraphrased prompts. In this study, we revisit the long line of work on pattern-based hypernym extraction, and use it as a diagnostic tool to thoroughly examine the hypernomy knowledge encoded in BERT and the limitations of hypernym extraction methods. We propose to construct prompts from established pattern structures: definitional (X is a Y); lexico-syntactic (Y such as X); and their anchored versions (Y such as X or Z). We devise an automatic method for anchor prediction, and compare different patterns in: (i) their effectiveness for hypernym retrieval from BERT across six English data sets; (ii) on challenge sets of rare and abstract concepts; and (iii) on consistency under paraphrasing. We show that anchoring is particularly useful for abstract concepts and in enhancing consistency across paraphrases, demonstrating how established methods in the field can inform prompt engineering.</abstract>
<identifier type="citekey">liu-etal-2023-seeking</identifier>
<identifier type="doi">10.18653/v1/2023.starsem-1.18</identifier>
<location>
<url>https://aclanthology.org/2023.starsem-1.18</url>
</location>
<part>
<date>2023-07</date>
<extent unit="page">
<start>193</start>
<end>206</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Seeking Clozure: Robust Hypernym extraction from BERT with Anchored Prompts
%A Liu, Chunhua
%A Cohn, Trevor
%A Frermann, Lea
%Y Palmer, Alexis
%Y Camacho-collados, Jose
%S Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)
%D 2023
%8 July
%I Association for Computational Linguistics
%C Toronto, Canada
%F liu-etal-2023-seeking
%X The automatic extraction of hypernym knowledge from large language models like BERT is an open problem, and it is unclear whether methods fail due to a lack of knowledge in the model or shortcomings of the extraction methods. In particular, methods fail on challenging cases which include rare or abstract concepts, and perform inconsistently under paraphrased prompts. In this study, we revisit the long line of work on pattern-based hypernym extraction, and use it as a diagnostic tool to thoroughly examine the hypernomy knowledge encoded in BERT and the limitations of hypernym extraction methods. We propose to construct prompts from established pattern structures: definitional (X is a Y); lexico-syntactic (Y such as X); and their anchored versions (Y such as X or Z). We devise an automatic method for anchor prediction, and compare different patterns in: (i) their effectiveness for hypernym retrieval from BERT across six English data sets; (ii) on challenge sets of rare and abstract concepts; and (iii) on consistency under paraphrasing. We show that anchoring is particularly useful for abstract concepts and in enhancing consistency across paraphrases, demonstrating how established methods in the field can inform prompt engineering.
%R 10.18653/v1/2023.starsem-1.18
%U https://aclanthology.org/2023.starsem-1.18
%U https://doi.org/10.18653/v1/2023.starsem-1.18
%P 193-206
Markdown (Informal)
[Seeking Clozure: Robust Hypernym extraction from BERT with Anchored Prompts](https://aclanthology.org/2023.starsem-1.18) (Liu et al., *SEM 2023)
ACL