@inproceedings{sun-etal-2024-determlr,
title = "{D}eterm{LR}: Augmenting {LLM}-based Logical Reasoning from Indeterminacy to Determinacy",
author = "Sun, Hongda and
Xu, Weikai and
Liu, Wei and
Luan, Jian and
Wang, Bin and
Shang, Shuo and
Wen, Ji-Rong and
Yan, Rui",
editor = "Ku, Lun-Wei and
Martins, Andre and
Srikumar, Vivek",
booktitle = "Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = aug,
year = "2024",
address = "Bangkok, Thailand",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.acl-long.531",
doi = "10.18653/v1/2024.acl-long.531",
pages = "9828--9862",
abstract = "Recent advances in large language models (LLMs) have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior studies have focused on modeling reasoning steps using various thought structures like chains, trees, or graphs. However, LLM-based reasoning still encounters the following challenges: (1) Limited adaptability of preset structures to diverse tasks; (2) Insufficient precision in exploiting known conditions to derive new ones; and (3) Inadequate consideration of historical reasoning experiences for subsequent reasoning steps. To this end, we propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy. First, we categorize known conditions into two types: determinate and indeterminate premises, facilitating the transformation process. Subsequently, we leverage quantitative measurements to prioritize more relevant premises to explore new insights. Furthermore, we automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps. Comprehensive experimental results demonstrate that DetermLR surpasses all baselines on various logical reasoning benchmarks: LogiQA, ProofWriter, FOLIO, PrOntoQA, and LogicalDeduction. Compared to previous multi-step reasoning methods, DetermLR achieves higher accuracy with fewer reasoning steps, highlighting its superior efficiency and effectiveness in solving logical reasoning tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sun-etal-2024-determlr">
<titleInfo>
<title>DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hongda</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Weikai</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Luan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shuo</namePart>
<namePart type="family">Shang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ji-Rong</namePart>
<namePart type="family">Wen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rui</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lun-Wei</namePart>
<namePart type="family">Ku</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andre</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vivek</namePart>
<namePart type="family">Srikumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Bangkok, Thailand</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent advances in large language models (LLMs) have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior studies have focused on modeling reasoning steps using various thought structures like chains, trees, or graphs. However, LLM-based reasoning still encounters the following challenges: (1) Limited adaptability of preset structures to diverse tasks; (2) Insufficient precision in exploiting known conditions to derive new ones; and (3) Inadequate consideration of historical reasoning experiences for subsequent reasoning steps. To this end, we propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy. First, we categorize known conditions into two types: determinate and indeterminate premises, facilitating the transformation process. Subsequently, we leverage quantitative measurements to prioritize more relevant premises to explore new insights. Furthermore, we automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps. Comprehensive experimental results demonstrate that DetermLR surpasses all baselines on various logical reasoning benchmarks: LogiQA, ProofWriter, FOLIO, PrOntoQA, and LogicalDeduction. Compared to previous multi-step reasoning methods, DetermLR achieves higher accuracy with fewer reasoning steps, highlighting its superior efficiency and effectiveness in solving logical reasoning tasks.</abstract>
<identifier type="citekey">sun-etal-2024-determlr</identifier>
<identifier type="doi">10.18653/v1/2024.acl-long.531</identifier>
<location>
<url>https://aclanthology.org/2024.acl-long.531</url>
</location>
<part>
<date>2024-08</date>
<extent unit="page">
<start>9828</start>
<end>9862</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy
%A Sun, Hongda
%A Xu, Weikai
%A Liu, Wei
%A Luan, Jian
%A Wang, Bin
%A Shang, Shuo
%A Wen, Ji-Rong
%A Yan, Rui
%Y Ku, Lun-Wei
%Y Martins, Andre
%Y Srikumar, Vivek
%S Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
%D 2024
%8 August
%I Association for Computational Linguistics
%C Bangkok, Thailand
%F sun-etal-2024-determlr
%X Recent advances in large language models (LLMs) have revolutionized the landscape of reasoning tasks. To enhance the capabilities of LLMs to emulate human reasoning, prior studies have focused on modeling reasoning steps using various thought structures like chains, trees, or graphs. However, LLM-based reasoning still encounters the following challenges: (1) Limited adaptability of preset structures to diverse tasks; (2) Insufficient precision in exploiting known conditions to derive new ones; and (3) Inadequate consideration of historical reasoning experiences for subsequent reasoning steps. To this end, we propose DetermLR, a novel perspective that rethinks the reasoning process as an evolution from indeterminacy to determinacy. First, we categorize known conditions into two types: determinate and indeterminate premises, facilitating the transformation process. Subsequently, we leverage quantitative measurements to prioritize more relevant premises to explore new insights. Furthermore, we automate the storage and extraction of available premises and reasoning paths with reasoning memory, preserving historical reasoning details for subsequent reasoning steps. Comprehensive experimental results demonstrate that DetermLR surpasses all baselines on various logical reasoning benchmarks: LogiQA, ProofWriter, FOLIO, PrOntoQA, and LogicalDeduction. Compared to previous multi-step reasoning methods, DetermLR achieves higher accuracy with fewer reasoning steps, highlighting its superior efficiency and effectiveness in solving logical reasoning tasks.
%R 10.18653/v1/2024.acl-long.531
%U https://aclanthology.org/2024.acl-long.531
%U https://doi.org/10.18653/v1/2024.acl-long.531
%P 9828-9862
Markdown (Informal)
[DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy](https://aclanthology.org/2024.acl-long.531) (Sun et al., ACL 2024)
ACL
- Hongda Sun, Weikai Xu, Wei Liu, Jian Luan, Bin Wang, Shuo Shang, Ji-Rong Wen, and Rui Yan. 2024. DetermLR: Augmenting LLM-based Logical Reasoning from Indeterminacy to Determinacy. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 9828–9862, Bangkok, Thailand. Association for Computational Linguistics.