@inproceedings{ram-etal-2024-dem,
title = "{DEM}: Distribution Edited Model for Training with Mixed Data Distributions",
author = "Ram, Dhananjay and
Rawal, Aditya and
Hardalov, Momchil and
Pappas, Nikolaos and
Zha, Sheng",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1074",
pages = "19287--19301",
abstract = "Training with mixed data distributions is a common and important part of creating multi-task and instruction-following models. The diversity of the data distributions and cost of joint training makes the optimization procedure extremely challenging. Data mixing methods partially address this problem, albeit having a sub-optimal performance across data sources and require multiple expensive training runs. In this paper, we propose a simple and efficient alternative for better optimization of the data sources by combining models individually trained on each data source with the base model using basic element-wise vector operations. The resulting model, namely Distribution Edited Model (DEM), is cheaper than standard data mixing and outperforms strong baselines on a variety of benchmarks, yielding upto 6.2{\%} improvement on MMLU, 11.5{\%} on BBH, 16.1{\%} on DROP, 6{\%} MathQA and 9.3{\%} on HELM with models of size 3B to 13B. Notably, DEM does not require full re-training when modifying a single data-source, thus making it very flexible and scalable for training with diverse data sources.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ram-etal-2024-dem">
<titleInfo>
<title>DEM: Distribution Edited Model for Training with Mixed Data Distributions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dhananjay</namePart>
<namePart type="family">Ram</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aditya</namePart>
<namePart type="family">Rawal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Momchil</namePart>
<namePart type="family">Hardalov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolaos</namePart>
<namePart type="family">Pappas</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Zha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Training with mixed data distributions is a common and important part of creating multi-task and instruction-following models. The diversity of the data distributions and cost of joint training makes the optimization procedure extremely challenging. Data mixing methods partially address this problem, albeit having a sub-optimal performance across data sources and require multiple expensive training runs. In this paper, we propose a simple and efficient alternative for better optimization of the data sources by combining models individually trained on each data source with the base model using basic element-wise vector operations. The resulting model, namely Distribution Edited Model (DEM), is cheaper than standard data mixing and outperforms strong baselines on a variety of benchmarks, yielding upto 6.2% improvement on MMLU, 11.5% on BBH, 16.1% on DROP, 6% MathQA and 9.3% on HELM with models of size 3B to 13B. Notably, DEM does not require full re-training when modifying a single data-source, thus making it very flexible and scalable for training with diverse data sources.</abstract>
<identifier type="citekey">ram-etal-2024-dem</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1074</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>19287</start>
<end>19301</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T DEM: Distribution Edited Model for Training with Mixed Data Distributions
%A Ram, Dhananjay
%A Rawal, Aditya
%A Hardalov, Momchil
%A Pappas, Nikolaos
%A Zha, Sheng
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F ram-etal-2024-dem
%X Training with mixed data distributions is a common and important part of creating multi-task and instruction-following models. The diversity of the data distributions and cost of joint training makes the optimization procedure extremely challenging. Data mixing methods partially address this problem, albeit having a sub-optimal performance across data sources and require multiple expensive training runs. In this paper, we propose a simple and efficient alternative for better optimization of the data sources by combining models individually trained on each data source with the base model using basic element-wise vector operations. The resulting model, namely Distribution Edited Model (DEM), is cheaper than standard data mixing and outperforms strong baselines on a variety of benchmarks, yielding upto 6.2% improvement on MMLU, 11.5% on BBH, 16.1% on DROP, 6% MathQA and 9.3% on HELM with models of size 3B to 13B. Notably, DEM does not require full re-training when modifying a single data-source, thus making it very flexible and scalable for training with diverse data sources.
%U https://aclanthology.org/2024.emnlp-main.1074
%P 19287-19301
Markdown (Informal)
[DEM: Distribution Edited Model for Training with Mixed Data Distributions](https://aclanthology.org/2024.emnlp-main.1074) (Ram et al., EMNLP 2024)
ACL