@inproceedings{nguyen-le-2024-adapters,
title = "Adapters Mixup: Mixing Parameter-Efficient Adapters to Enhance the Adversarial Robustness of Fine-tuned Pre-trained Text Classifiers",
author = "Nguyen, Tuc and
Le, Thai",
editor = "Al-Onaizan, Yaser and
Bansal, Mohit and
Chen, Yun-Nung",
booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing",
month = nov,
year = "2024",
address = "Miami, Florida, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.emnlp-main.1180",
pages = "21183--21203",
abstract = "Existing works show that augmenting the training data of pre-trained language models (PLMs) for classification tasks fine-tuned via parameter-efficient fine-tuning methods (PEFT) using both clean and adversarial examples can enhance their robustness under adversarial attacks. However, this adversarial training paradigm often leads to performance degradation on clean inputs and requires frequent re-training on the entire data to account for new, unknown attacks. To overcome these challenges while still harnessing the benefits of adversarial training and the efficiency of PEFT, this work proposes a novel approach, called AdpMixup, that combines two paradigms: (1) fine-tuning through adapters and (2) adversarial augmentation via mixup to dynamically leverage existing knowledge from a set of pre-known attacks for robust inference. Intuitively, AdpMixup fine-tunes PLMs with multiple adapters with both clean and pre-known adversarial examples and intelligently mixes them up in different ratios during prediction. Our experiments show AdpMixup achieves the best trade-off between training efficiency and robustness under both pre-known and unknown attacks, compared to existing baselines on five downstream tasks across six varied black-box attacks and 2 PLMs. The code is available at https://github.com/nguyentuc/adapters{\_}mixup.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="nguyen-le-2024-adapters">
<titleInfo>
<title>Adapters Mixup: Mixing Parameter-Efficient Adapters to Enhance the Adversarial Robustness of Fine-tuned Pre-trained Text Classifiers</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tuc</namePart>
<namePart type="family">Nguyen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thai</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yaser</namePart>
<namePart type="family">Al-Onaizan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Bansal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun-Nung</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Miami, Florida, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing works show that augmenting the training data of pre-trained language models (PLMs) for classification tasks fine-tuned via parameter-efficient fine-tuning methods (PEFT) using both clean and adversarial examples can enhance their robustness under adversarial attacks. However, this adversarial training paradigm often leads to performance degradation on clean inputs and requires frequent re-training on the entire data to account for new, unknown attacks. To overcome these challenges while still harnessing the benefits of adversarial training and the efficiency of PEFT, this work proposes a novel approach, called AdpMixup, that combines two paradigms: (1) fine-tuning through adapters and (2) adversarial augmentation via mixup to dynamically leverage existing knowledge from a set of pre-known attacks for robust inference. Intuitively, AdpMixup fine-tunes PLMs with multiple adapters with both clean and pre-known adversarial examples and intelligently mixes them up in different ratios during prediction. Our experiments show AdpMixup achieves the best trade-off between training efficiency and robustness under both pre-known and unknown attacks, compared to existing baselines on five downstream tasks across six varied black-box attacks and 2 PLMs. The code is available at https://github.com/nguyentuc/adapters_mixup.</abstract>
<identifier type="citekey">nguyen-le-2024-adapters</identifier>
<location>
<url>https://aclanthology.org/2024.emnlp-main.1180</url>
</location>
<part>
<date>2024-11</date>
<extent unit="page">
<start>21183</start>
<end>21203</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Adapters Mixup: Mixing Parameter-Efficient Adapters to Enhance the Adversarial Robustness of Fine-tuned Pre-trained Text Classifiers
%A Nguyen, Tuc
%A Le, Thai
%Y Al-Onaizan, Yaser
%Y Bansal, Mohit
%Y Chen, Yun-Nung
%S Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
%D 2024
%8 November
%I Association for Computational Linguistics
%C Miami, Florida, USA
%F nguyen-le-2024-adapters
%X Existing works show that augmenting the training data of pre-trained language models (PLMs) for classification tasks fine-tuned via parameter-efficient fine-tuning methods (PEFT) using both clean and adversarial examples can enhance their robustness under adversarial attacks. However, this adversarial training paradigm often leads to performance degradation on clean inputs and requires frequent re-training on the entire data to account for new, unknown attacks. To overcome these challenges while still harnessing the benefits of adversarial training and the efficiency of PEFT, this work proposes a novel approach, called AdpMixup, that combines two paradigms: (1) fine-tuning through adapters and (2) adversarial augmentation via mixup to dynamically leverage existing knowledge from a set of pre-known attacks for robust inference. Intuitively, AdpMixup fine-tunes PLMs with multiple adapters with both clean and pre-known adversarial examples and intelligently mixes them up in different ratios during prediction. Our experiments show AdpMixup achieves the best trade-off between training efficiency and robustness under both pre-known and unknown attacks, compared to existing baselines on five downstream tasks across six varied black-box attacks and 2 PLMs. The code is available at https://github.com/nguyentuc/adapters_mixup.
%U https://aclanthology.org/2024.emnlp-main.1180
%P 21183-21203
Markdown (Informal)
[Adapters Mixup: Mixing Parameter-Efficient Adapters to Enhance the Adversarial Robustness of Fine-tuned Pre-trained Text Classifiers](https://aclanthology.org/2024.emnlp-main.1180) (Nguyen & Le, EMNLP 2024)
ACL